import base64 import os import gradio as gr import spaces import torch from transformers import AutoModel, AutoTokenizer model_name = "ucaslcl/GOT-OCR2_0" device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModel.from_pretrained(model_name, trust_remote_code=True, device_map=device) model = model.eval().to(device) @spaces.GPU() def ocr_process(image, got_mode, ocr_color="", ocr_box="", progress=gr.Progress()): if image is None: return "错误:未提供图片" try: image_path = image result_path = f"{os.path.splitext(image_path)[0]}_result.html" progress(0, desc="开始处理...") if "plain" in got_mode: progress(0.3, desc="执行OCR识别...") if "multi-crop" in got_mode: res = model.chat_crop(tokenizer, image_path, ocr_type="ocr") else: res = model.chat(tokenizer, image_path, ocr_type="ocr", ocr_box=ocr_box, ocr_color=ocr_color) progress(1, desc="处理完成") return res elif "format" in got_mode: progress(0.3, desc="执行OCR识别...") if "multi-crop" in got_mode: res = model.chat_crop(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path) else: res = model.chat(tokenizer, image_path, ocr_type="format", ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path) progress(0.7, desc="生成结果...") if os.path.exists(result_path): with open(result_path, "r", encoding="utf-8") as f: html_content = f.read() encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8") data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" preview = f'' download_link = f'下载完整结果' progress(1, desc="处理完成") return f"{download_link}\n\n{preview}" return "错误: 未知的OCR模式" except Exception as e: return f"错误: {str(e)}" with gr.Blocks() as demo: gr.Markdown("# OCR 图像识别") with gr.Row(): image_input = gr.Image(type="filepath", label="上传图片") got_mode = gr.Dropdown( choices=["plain texts OCR", "format texts OCR", "plain multi-crop OCR", "format multi-crop OCR", "plain fine-grained OCR", "format fine-grained OCR"], label="OCR模式", value="plain texts OCR", ) with gr.Row(): ocr_color = gr.Textbox(label="OCR颜色 (仅用于fine-grained模式)") ocr_box = gr.Textbox(label="OCR边界框 (仅用于fine-grained模式)") submit_button = gr.Button("开始OCR识别") output = gr.HTML(label="识别结果") submit_button.click(ocr_process, inputs=[image_input, got_mode, ocr_color, ocr_box], outputs=output) if __name__ == "__main__": demo.launch()