Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,798 Bytes
4cc901a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
from dataclasses import dataclass
import torch
from einops import rearrange
from huggingface_hub import hf_hub_download
from imwatermark import WatermarkEncoder
from safetensors.torch import load_file as load_sft
from flux.model import Flux, FluxParams
from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams
from flux.modules.conditioner import HFEmbedder
@dataclass
class ModelSpec:
params: FluxParams
ae_params: AutoEncoderParams
ckpt_path: str | None
ae_path: str | None
repo_id: str | None
repo_flow: str | None
repo_ae: str | None
configs = {
"flux-dev": ModelSpec(
repo_id="black-forest-labs/FLUX.1-dev",
repo_flow="flux1-dev.safetensors",
repo_ae="ae.safetensors",
ckpt_path=os.getenv("FLUX_DEV"),
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_path=os.getenv("AE"),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-schnell": ModelSpec(
repo_id="black-forest-labs/FLUX.1-schnell",
repo_flow="flux1-schnell.safetensors",
repo_ae="ae.safetensors",
ckpt_path=os.getenv("FLUX_SCHNELL"),
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=False,
),
ae_path=os.getenv("AE"),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
}
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
if len(missing) > 0 and len(unexpected) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
print("\n" + "-" * 79 + "\n")
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
elif len(missing) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
elif len(unexpected) > 0:
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
def load_flow_model(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
# Loading Flux
print("Init model")
ckpt_path = configs[name].ckpt_path
if (
ckpt_path is None
and configs[name].repo_id is not None
and configs[name].repo_flow is not None
and hf_download
):
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)
with torch.device("meta" if ckpt_path is not None else device):
model = Flux(configs[name].params).to(torch.bfloat16)
if ckpt_path is not None:
print("Loading checkpoint")
# load_sft doesn't support torch.device
sd = load_sft(ckpt_path, device=str(device))
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
return model
def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder:
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
return HFEmbedder("google/t5-v1_1-xxl", max_length=max_length, is_clip=False, torch_dtype=torch.bfloat16).to(device)
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, is_clip=True, torch_dtype=torch.bfloat16).to(device)
def load_ae(name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder:
ckpt_path = configs[name].ae_path
if (
ckpt_path is None
and configs[name].repo_id is not None
and configs[name].repo_ae is not None
and hf_download
):
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_ae)
# Loading the autoencoder
print("Init AE")
with torch.device("meta" if ckpt_path is not None else device):
ae = AutoEncoder(configs[name].ae_params)
if ckpt_path is not None:
sd = load_sft(ckpt_path, device=str(device))
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
return ae
class WatermarkEmbedder:
def __init__(self, watermark):
self.watermark = watermark
self.num_bits = len(WATERMARK_BITS)
self.encoder = WatermarkEncoder()
self.encoder.set_watermark("bits", self.watermark)
def __call__(self, image: torch.Tensor) -> torch.Tensor:
"""
Adds a predefined watermark to the input image
Args:
image: ([N,] B, RGB, H, W) in range [-1, 1]
Returns:
same as input but watermarked
"""
image = 0.5 * image + 0.5
squeeze = len(image.shape) == 4
if squeeze:
image = image[None, ...]
n = image.shape[0]
image_np = rearrange((255 * image).detach().cpu(), "n b c h w -> (n b) h w c").numpy()[:, :, :, ::-1]
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
# watermarking libary expects input as cv2 BGR format
for k in range(image_np.shape[0]):
image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
image = torch.from_numpy(rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)).to(
image.device
)
image = torch.clamp(image / 255, min=0.0, max=1.0)
if squeeze:
image = image[0]
image = 2 * image - 1
return image
# A fixed 48-bit message that was chosen at random
WATERMARK_MESSAGE = 0b001010101111111010000111100111001111010100101110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
embed_watermark = WatermarkEmbedder(WATERMARK_BITS)
|