FireFlow / app.py
wjs0725's picture
Update app.py
fbd66df verified
raw
history blame
11.3 kB
import os
import re
import time
from io import BytesIO
import uuid
from dataclasses import dataclass
from glob import iglob
import argparse
from einops import rearrange
from fire import Fire
from PIL import ExifTags, Image
import spaces
import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from transformers import pipeline
from flux.sampling import denoise, get_schedule, prepare, unpack
from flux.util import (configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5)
from huggingface_hub import login
login(token=os.getenv('Token'))
import torch
device = torch.cuda.current_device()
total_memory = torch.cuda.get_device_properties(device).total_memory
allocated_memory = torch.cuda.memory_allocated(device)
reserved_memory = torch.cuda.memory_reserved(device)
print(f"Total memory: {total_memory / 1024**2:.2f} MB")
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
@dataclass
class SamplingOptions:
source_prompt: str
target_prompt: str
# prompt: str
width: int
height: int
num_steps: int
guidance: float
seed: int | None
@spaces.GPU(duration=30)
class FluxEditor:
def __init__(self, args):
self.args = args
self.device = torch.device(args.device)
self.offload = args.offload
self.name = args.name
self.is_schnell = args.name == "flux-schnell"
self.feature_path = 'feature'
self.output_dir = 'result'
self.add_sampling_metadata = True
if self.name not in configs:
available = ", ".join(configs.keys())
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
# init all components
self.t5 = load_t5(self.device, max_length=256 if self.name == "flux-schnell" else 512)
self.clip = load_clip(self.device)
self.model = load_flow_model(self.name, device="cpu" if self.offload else self.device)
self.ae = load_ae(self.name, device="cpu" if self.offload else self.device)
self.t5.eval()
self.clip.eval()
self.ae.eval()
self.model.eval()
if self.offload:
self.model.cpu()
torch.cuda.empty_cache()
self.ae.encoder.to(self.device)
@torch.inference_mode()
def encode(init_image, torch_device, ae):
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
init_image = init_image.unsqueeze(0)
init_image = init_image.to(torch_device)
ae = ae.cuda()
with torch.no_grad():
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
return init_image
@torch.inference_mode()
def edit(self, init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed):
torch.cuda.empty_cache()
seed = None
# if seed == -1:
# seed = None
shape = init_image.shape
new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16
new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16
init_image = init_image[:new_h, :new_w, :]
width, height = init_image.shape[0], init_image.shape[1]
init_image = self.encode(init_image, self.device, self.ae)
print(init_image.shape)
rng = torch.Generator(device="cpu")
opts = SamplingOptions(
source_prompt=source_prompt,
target_prompt=target_prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
if opts.seed is None:
opts.seed = torch.Generator(device="cpu").seed()
print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}")
t0 = time.perf_counter()
opts.seed = None
if self.offload:
self.ae = self.ae.cpu()
torch.cuda.empty_cache()
self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)
#############inverse#######################
info = {}
info['feature'] = {}
info['inject_step'] = inject_step
if not os.path.exists(self.feature_path):
os.mkdir(self.feature_path)
print("!!!!!!!!self.t5!!!!!!",next(self.t5.parameters()).device)
print("!!!!!!!!self.clip!!!!!!",next(self.clip.parameters()).device)
print("!!!!!!!!self.model!!!!!!",next(self.model.parameters()).device)
device = torch.cuda.current_device()
total_memory = torch.cuda.get_device_properties(device).total_memory
allocated_memory = torch.cuda.memory_allocated(device)
reserved_memory = torch.cuda.memory_reserved(device)
print(f"Total memory: {total_memory / 1024**2:.2f} MB")
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
self.t5 = self.t5.cuda()
self.clip = self.clip.cuda()
self.model = self.model.cuda()
device = torch.cuda.current_device()
total_memory = torch.cuda.get_device_properties(device).total_memory
allocated_memory = torch.cuda.memory_allocated(device)
reserved_memory = torch.cuda.memory_reserved(device)
print(f"Total memory: {total_memory / 1024**2:.2f} MB")
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
with torch.no_grad():
inp = prepare(self.t5, self.clip, init_image, prompt=opts.source_prompt)
inp_target = prepare(self.t5, self.clip, init_image, prompt=opts.target_prompt)
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(self.name != "flux-schnell"))
# offload TEs to CPU, load model to gpu
if self.offload:
self.t5, self.clip = self.t5.cpu(), self.clip.cpu()
torch.cuda.empty_cache()
self.model = self.model.to(self.device)
# inversion initial noise
with torch.no_grad():
z, info = denoise(self.model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
inp_target["img"] = z
timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(self.name != "flux-schnell"))
# denoise initial noise
x, _ = denoise(self.model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info)
# offload model, load autoencoder to gpu
if self.offload:
self.model.cpu()
torch.cuda.empty_cache()
self.ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), opts.width, opts.height)
output_name = os.path.join(self.output_dir, "img_{idx}.jpg")
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
ae = ae.cuda()
with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
x = self.ae.decode(x)
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.perf_counter()
fn = output_name.format(idx=idx)
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
# bring into PIL format and save
x = x.clamp(-1, 1)
x = embed_watermark(x.float())
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
exif_data = Image.Exif()
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = self.name
if self.add_sampling_metadata:
exif_data[ExifTags.Base.ImageDescription] = source_prompt
img.save(fn, exif=exif_data, quality=95, subsampling=0)
print("End Edit")
return img
def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False):
editor = FluxEditor(args)
is_schnell = model_name == "flux-schnell"
with gr.Blocks() as demo:
gr.Markdown(f"# RF-Edit Demo (FLUX for image editing)")
with gr.Row():
with gr.Column():
# source_prompt = gr.Textbox(label="Source Prompt", value="")
# target_prompt = gr.Textbox(label="Target Prompt", value="")
source_prompt = gr.Text(
label="Source Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your source prompt",
container=False,
value=""
)
target_prompt = gr.Text(
label="Target Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your target prompt",
container=False,
value=""
)
init_image = gr.Image(label="Input Image", visible=True)
generate_btn = gr.Button("Generate")
with gr.Column():
with gr.Accordion("Advanced Options", open=True):
num_steps = gr.Slider(1, 30, 25, step=1, label="Number of steps")
inject_step = gr.Slider(1, 15, 5, step=1, label="Number of inject steps")
guidance = gr.Slider(1.0, 10.0, 2, step=0.1, label="Guidance", interactive=not is_schnell)
# seed = gr.Textbox(0, label="Seed (-1 for random)", visible=False)
# add_sampling_metadata = gr.Checkbox(label="Add sampling parameters to metadata?", value=False)
output_image = gr.Image(label="Generated Image")
generate_btn.click(
fn=editor.edit,
inputs=[init_image, source_prompt, target_prompt, num_steps, inject_step, guidance],
outputs=[output_image]
)
return demo
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Flux")
parser.add_argument("--name", type=str, default="flux-dev", choices=list(configs.keys()), help="Model name")
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
parser.add_argument("--port", type=int, default=41035)
args = parser.parse_args()
demo = create_demo(args.name, args.device)
demo.launch()