Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -48,67 +48,80 @@ class SamplingOptions:
|
|
48 |
|
49 |
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
# if seed == -1:
|
94 |
# seed = None
|
95 |
|
96 |
-
|
97 |
|
98 |
-
|
99 |
-
|
100 |
|
101 |
-
|
102 |
|
103 |
-
|
104 |
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
|
112 |
source_prompt=source_prompt,
|
113 |
target_prompt=target_prompt,
|
114 |
width=width,
|
@@ -117,121 +130,93 @@ class FluxEditor:
|
|
117 |
guidance=guidance,
|
118 |
seed=seed,
|
119 |
)
|
120 |
-
|
121 |
-
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
opts.seed = None
|
127 |
-
if self.offload:
|
128 |
-
self.ae = self.ae.cpu()
|
129 |
-
torch.cuda.empty_cache()
|
130 |
-
self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)
|
131 |
|
132 |
-
|
133 |
-
info = {}
|
134 |
-
info['feature'] = {}
|
135 |
-
info['inject_step'] = inject_step
|
136 |
|
137 |
-
|
138 |
-
|
|
|
|
|
139 |
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
print("!!!!!!!!self.model!!!!!!",next(self.model.parameters()).device)
|
150 |
-
|
151 |
-
device = torch.cuda.current_device()
|
152 |
-
total_memory = torch.cuda.get_device_properties(device).total_memory
|
153 |
-
allocated_memory = torch.cuda.memory_allocated(device)
|
154 |
-
reserved_memory = torch.cuda.memory_reserved(device)
|
155 |
-
|
156 |
-
print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
157 |
-
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
158 |
-
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
159 |
-
|
160 |
-
|
161 |
-
with torch.no_grad():
|
162 |
-
inp = prepare(self.t5, self.clip, init_image, prompt=opts.source_prompt)
|
163 |
-
inp_target = prepare(self.t5, self.clip, init_image, prompt=opts.target_prompt)
|
164 |
-
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(self.name != "flux-schnell"))
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
self.model = self.model.to(self.device)
|
171 |
|
172 |
# inversion initial noise
|
173 |
-
|
174 |
-
|
175 |
|
176 |
-
|
177 |
|
178 |
-
|
179 |
|
180 |
-
|
181 |
-
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
self.model.cpu()
|
186 |
-
torch.cuda.empty_cache()
|
187 |
-
self.ae.decoder.to(x.device)
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
196 |
else:
|
197 |
-
|
198 |
-
if len(fns) > 0:
|
199 |
-
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
200 |
-
else:
|
201 |
-
idx = 0
|
202 |
-
|
203 |
-
ae = ae.cuda()
|
204 |
-
with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
|
205 |
-
x = self.ae.decode(x)
|
206 |
-
|
207 |
-
if torch.cuda.is_available():
|
208 |
-
torch.cuda.synchronize()
|
209 |
-
t1 = time.perf_counter()
|
210 |
-
|
211 |
-
fn = output_name.format(idx=idx)
|
212 |
-
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
|
213 |
-
# bring into PIL format and save
|
214 |
-
x = x.clamp(-1, 1)
|
215 |
-
x = embed_watermark(x.float())
|
216 |
-
x = rearrange(x[0], "c h w -> h w c")
|
217 |
-
|
218 |
-
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
|
219 |
-
exif_data = Image.Exif()
|
220 |
-
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
|
221 |
-
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
|
222 |
-
exif_data[ExifTags.Base.Model] = self.name
|
223 |
-
if self.add_sampling_metadata:
|
224 |
-
exif_data[ExifTags.Base.ImageDescription] = source_prompt
|
225 |
-
img.save(fn, exif=exif_data, quality=95, subsampling=0)
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
|
232 |
|
233 |
def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False):
|
234 |
-
editor = FluxEditor(args)
|
235 |
is_schnell = model_name == "flux-schnell"
|
236 |
|
237 |
with gr.Blocks() as demo:
|
@@ -273,7 +258,7 @@ def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_availab
|
|
273 |
output_image = gr.Image(label="Generated Image")
|
274 |
|
275 |
generate_btn.click(
|
276 |
-
fn=
|
277 |
inputs=[init_image, source_prompt, target_prompt, num_steps, inject_step, guidance],
|
278 |
outputs=[output_image]
|
279 |
)
|
@@ -282,16 +267,16 @@ def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_availab
|
|
282 |
return demo
|
283 |
|
284 |
|
285 |
-
if __name__ == "__main__":
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
|
293 |
-
|
294 |
-
|
295 |
|
296 |
-
|
297 |
-
|
|
|
48 |
|
49 |
|
50 |
|
51 |
+
offload = False
|
52 |
+
name = "flux-dev"
|
53 |
+
is_schnell = False
|
54 |
+
feature_path = 'feature'
|
55 |
+
output_dir = 'result'
|
56 |
+
add_sampling_metadata = True
|
57 |
+
# class FluxEditor:
|
58 |
+
# def __init__(self, args):
|
59 |
+
# self.args = args
|
60 |
+
# self.device = torch.device(args.device)
|
61 |
+
# self.offload = args.offload
|
62 |
+
# self.name = args.name
|
63 |
+
# self.is_schnell = args.name == "flux-schnell"
|
64 |
+
|
65 |
+
# self.feature_path = 'feature'
|
66 |
+
# self.output_dir = 'result'
|
67 |
+
# self.add_sampling_metadata = True
|
68 |
+
|
69 |
+
# if self.name not in configs:
|
70 |
+
# available = ", ".join(configs.keys())
|
71 |
+
# raise ValueError(f"Got unknown model name: {name}, chose from {available}")
|
72 |
+
|
73 |
+
# # init all components
|
74 |
|
75 |
|
76 |
+
# if self.offload:
|
77 |
+
# self.model.cpu()
|
78 |
+
# torch.cuda.empty_cache()
|
79 |
+
# self.ae.encoder.to(self.device)
|
80 |
+
ae = load_ae(name, device="cpu" if offload else device)
|
81 |
+
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
82 |
+
clip = load_clip(device)
|
83 |
+
model = load_flow_model(name, device="cpu" if offload else device)
|
84 |
+
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
85 |
+
print("!!!!!!!!self.t5!!!!!!",next(t5.parameters()).device)
|
86 |
+
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
87 |
+
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
88 |
+
|
89 |
+
@torch.inference_mode()
|
90 |
+
def encode(init_image, torch_device, ae):
|
91 |
+
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
|
92 |
+
init_image = init_image.unsqueeze(0)
|
93 |
+
init_image = init_image.to(torch_device)
|
94 |
+
ae = ae.cuda()
|
95 |
+
with torch.no_grad():
|
96 |
+
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
|
97 |
+
return init_image
|
98 |
+
|
99 |
+
@spaces.GPU(duration=120)
|
100 |
+
@torch.inference_mode()
|
101 |
+
def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed):
|
102 |
+
|
103 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
104 |
+
torch.cuda.empty_cache()
|
105 |
+
seed = None
|
106 |
# if seed == -1:
|
107 |
# seed = None
|
108 |
|
109 |
+
shape = init_image.shape
|
110 |
|
111 |
+
new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16
|
112 |
+
new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16
|
113 |
|
114 |
+
init_image = init_image[:new_h, :new_w, :]
|
115 |
|
116 |
+
width, height = init_image.shape[0], init_image.shape[1]
|
117 |
|
118 |
+
|
119 |
+
init_image = encode(init_image, device, ae)
|
120 |
|
121 |
+
print(init_image.shape)
|
122 |
|
123 |
+
rng = torch.Generator(device="cpu")
|
124 |
+
opts = SamplingOptions(
|
125 |
source_prompt=source_prompt,
|
126 |
target_prompt=target_prompt,
|
127 |
width=width,
|
|
|
130 |
guidance=guidance,
|
131 |
seed=seed,
|
132 |
)
|
133 |
+
if opts.seed is None:
|
134 |
+
opts.seed = torch.Generator(device="cpu").seed()
|
135 |
|
136 |
+
print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}")
|
137 |
+
t0 = time.perf_counter()
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
opts.seed = None
|
|
|
|
|
|
|
140 |
|
141 |
+
#############inverse#######################
|
142 |
+
info = {}
|
143 |
+
info['feature'] = {}
|
144 |
+
info['inject_step'] = inject_step
|
145 |
|
146 |
+
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
147 |
+
print("!!!!!!!!self.t5!!!!!!",next(t5.parameters()).device)
|
148 |
+
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
149 |
+
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
150 |
|
151 |
+
device = torch.cuda.current_device()
|
152 |
+
total_memory = torch.cuda.get_device_properties(device).total_memory
|
153 |
+
allocated_memory = torch.cuda.memory_allocated(device)
|
154 |
+
reserved_memory = torch.cuda.memory_reserved(device)
|
155 |
|
156 |
+
print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
157 |
+
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
158 |
+
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
with torch.no_grad():
|
161 |
+
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
|
162 |
+
inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt)
|
163 |
+
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
|
|
164 |
|
165 |
# inversion initial noise
|
166 |
+
with torch.no_grad():
|
167 |
+
z, info = denoise(model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
|
168 |
|
169 |
+
inp_target["img"] = z
|
170 |
|
171 |
+
timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(name != "flux-schnell"))
|
172 |
|
173 |
+
# denoise initial noise
|
174 |
+
x, _ = denoise(model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info)
|
175 |
|
176 |
+
# decode latents to pixel space
|
177 |
+
x = unpack(x.float(), opts.width, opts.height)
|
|
|
|
|
|
|
178 |
|
179 |
+
output_name = os.path.join(output_dir, "img_{idx}.jpg")
|
180 |
+
if not os.path.exists(output_dir):
|
181 |
+
os.makedirs(output_dir)
|
182 |
+
idx = 0
|
183 |
+
else:
|
184 |
+
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
|
185 |
+
if len(fns) > 0:
|
186 |
+
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
187 |
else:
|
188 |
+
idx = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
ae = ae.cuda()
|
191 |
+
with torch.autocast(device_type=device.type, dtype=torch.bfloat16):
|
192 |
+
x = ae.decode(x)
|
193 |
+
|
194 |
+
if torch.cuda.is_available():
|
195 |
+
torch.cuda.synchronize()
|
196 |
+
t1 = time.perf_counter()
|
197 |
+
|
198 |
+
fn = output_name.format(idx=idx)
|
199 |
+
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
|
200 |
+
# bring into PIL format and save
|
201 |
+
x = x.clamp(-1, 1)
|
202 |
+
x = embed_watermark(x.float())
|
203 |
+
x = rearrange(x[0], "c h w -> h w c")
|
204 |
+
|
205 |
+
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
|
206 |
+
exif_data = Image.Exif()
|
207 |
+
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
|
208 |
+
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
|
209 |
+
exif_data[ExifTags.Base.Model] = name
|
210 |
+
if add_sampling_metadata:
|
211 |
+
exif_data[ExifTags.Base.ImageDescription] = source_prompt
|
212 |
+
img.save(fn, exif=exif_data, quality=95, subsampling=0)
|
213 |
+
|
214 |
+
print("End Edit")
|
215 |
+
return img
|
216 |
|
217 |
|
218 |
|
219 |
def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False):
|
|
|
220 |
is_schnell = model_name == "flux-schnell"
|
221 |
|
222 |
with gr.Blocks() as demo:
|
|
|
258 |
output_image = gr.Image(label="Generated Image")
|
259 |
|
260 |
generate_btn.click(
|
261 |
+
fn=edit,
|
262 |
inputs=[init_image, source_prompt, target_prompt, num_steps, inject_step, guidance],
|
263 |
outputs=[output_image]
|
264 |
)
|
|
|
267 |
return demo
|
268 |
|
269 |
|
270 |
+
# if __name__ == "__main__":
|
271 |
+
# import argparse
|
272 |
+
# parser = argparse.ArgumentParser(description="Flux")
|
273 |
+
# parser.add_argument("--name", type=str, default="flux-dev", choices=list(configs.keys()), help="Model name")
|
274 |
+
# parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
|
275 |
+
# parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
|
276 |
+
# parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
|
277 |
|
278 |
+
# parser.add_argument("--port", type=int, default=41035)
|
279 |
+
# args = parser.parse_args()
|
280 |
|
281 |
+
demo = create_demo("flux-dev", "cuda")
|
282 |
+
demo.launch()
|