wjs0725 commited on
Commit
f2b6361
1 Parent(s): 1e3cd91

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -38,6 +38,7 @@ def encode(init_image, torch_device, ae):
38
  init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
39
  init_image = init_image.unsqueeze(0)
40
  init_image = init_image.to(torch_device)
 
41
  with torch.no_grad():
42
  init_image = ae.encode(init_image.to()).to(torch.bfloat16)
43
  return init_image
@@ -125,7 +126,8 @@ class FluxEditor:
125
  os.mkdir(self.feature_path)
126
 
127
  with torch.no_grad():
128
- inp = prepare(self.t5, self.clip, init_image, prompt=opts.source_prompt)
 
129
  inp_target = prepare(self.t5, self.clip, init_image, prompt=opts.target_prompt)
130
  timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(self.name != "flux-schnell"))
131
 
@@ -137,14 +139,14 @@ class FluxEditor:
137
 
138
  # inversion initial noise
139
  with torch.no_grad():
140
- z, info = denoise(self.model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
141
 
142
  inp_target["img"] = z
143
 
144
  timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(self.name != "flux-schnell"))
145
 
146
  # denoise initial noise
147
- x, _ = denoise(self.model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info)
148
 
149
  # offload model, load autoencoder to gpu
150
  if self.offload:
@@ -166,6 +168,7 @@ class FluxEditor:
166
  else:
167
  idx = 0
168
 
 
169
  with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
170
  x = self.ae.decode(x)
171
 
 
38
  init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
39
  init_image = init_image.unsqueeze(0)
40
  init_image = init_image.to(torch_device)
41
+ ae = ae.cuda()
42
  with torch.no_grad():
43
  init_image = ae.encode(init_image.to()).to(torch.bfloat16)
44
  return init_image
 
126
  os.mkdir(self.feature_path)
127
 
128
  with torch.no_grad():
129
+ self.t5, self.clip = self.t5.cuda(), self.clip.cuda()
130
+ inp = prepare(self.t5.cuda(), self.clip, init_image, prompt=opts.source_prompt)
131
  inp_target = prepare(self.t5, self.clip, init_image, prompt=opts.target_prompt)
132
  timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(self.name != "flux-schnell"))
133
 
 
139
 
140
  # inversion initial noise
141
  with torch.no_grad():
142
+ z, info = denoise(self.model.cuda(), **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
143
 
144
  inp_target["img"] = z
145
 
146
  timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(self.name != "flux-schnell"))
147
 
148
  # denoise initial noise
149
+ x, _ = denoise(self.model.cuda(), **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info)
150
 
151
  # offload model, load autoencoder to gpu
152
  if self.offload:
 
168
  else:
169
  idx = 0
170
 
171
+ ae = ae.cuda()
172
  with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
173
  x = self.ae.decode(x)
174