import math from typing import Callable import torch from einops import rearrange, repeat from torch import Tensor from .model import Flux from .modules.conditioner import HFEmbedder def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]: bs, c, h, w = img.shape if bs == 1 and not isinstance(prompt, str): bs = len(prompt) img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) if img.shape[0] == 1 and bs > 1: img = repeat(img, "1 ... -> bs ...", bs=bs) img_ids = torch.zeros(h // 2, w // 2, 3) img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) if isinstance(prompt, str): prompt = [prompt] txt = t5(prompt) if txt.shape[0] == 1 and bs > 1: txt = repeat(txt, "1 ... -> bs ...", bs=bs) txt_ids = torch.zeros(bs, txt.shape[1], 3) print("!!!!!!!!!!!!opts.source_prompt!!!!!!!!!!!!",len(prompt)) print("!!!!!!!!!!!!opts.source_prompt!!!!!!!!!!!!",prompt) print("!!!!!!!!!!clip!!!!!!!!!",device = next(clip.parameters()).device) vec = clip(prompt) if vec.shape[0] == 1 and bs > 1: vec = repeat(vec, "1 ... -> bs ...", bs=bs) return { "img": img, "img_ids": img_ids.to(img.device), "txt": txt.to(img.device), "txt_ids": txt_ids.to(img.device), "vec": vec.to(img.device), } def time_shift(mu: float, sigma: float, t: Tensor): return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) def get_lin_function( x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 ) -> Callable[[float], float]: m = (y2 - y1) / (x2 - x1) b = y1 - m * x1 return lambda x: m * x + b def get_schedule( num_steps: int, image_seq_len: int, base_shift: float = 0.5, max_shift: float = 1.15, shift: bool = True, ) -> list[float]: # extra step for zero timesteps = torch.linspace(1, 0, num_steps + 1) # shifting the schedule to favor high timesteps for higher signal images if shift: # estimate mu based on linear estimation between two points mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) timesteps = time_shift(mu, 1.0, timesteps) return timesteps.tolist() def denoise( model: Flux, # model input img: Tensor, img_ids: Tensor, txt: Tensor, txt_ids: Tensor, vec: Tensor, # sampling parameters timesteps: list[float], inverse, info, guidance: float = 4.0 ): # this is ignored for schnell inject_list = [True] * info['inject_step'] + [False] * (len(timesteps[:-1]) - info['inject_step']) if inverse: timesteps = timesteps[::-1] inject_list = inject_list[::-1] guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) step_list = [] for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])): t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) info['t'] = t_prev if inverse else t_curr info['inverse'] = inverse info['second_order'] = False info['inject'] = inject_list[i] pred, info = model( img=img, img_ids=img_ids, txt=txt, txt_ids=txt_ids, y=vec, timesteps=t_vec, guidance=guidance_vec, info=info ) img_mid = img + (t_prev - t_curr) / 2 * pred t_vec_mid = torch.full((img.shape[0],), (t_curr + (t_prev - t_curr) / 2), dtype=img.dtype, device=img.device) info['second_order'] = True pred_mid, info = model( img=img_mid, img_ids=img_ids, txt=txt, txt_ids=txt_ids, y=vec, timesteps=t_vec_mid, guidance=guidance_vec, info=info ) first_order = (pred_mid - pred) / ((t_prev - t_curr) / 2) img = img + (t_prev - t_curr) * pred + 0.5 * (t_prev - t_curr) ** 2 * first_order return img, info def unpack(x: Tensor, height: int, width: int) -> Tensor: return rearrange( x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=math.ceil(height / 16), w=math.ceil(width / 16), ph=2, pw=2, )