import argparse import os from pathlib import Path import logging import re_matching logging.getLogger("numba").setLevel(logging.WARNING) logging.getLogger("markdown_it").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("matplotlib").setLevel(logging.WARNING) logging.basicConfig( level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" ) logger = logging.getLogger(__name__) import shutil from scipy.io.wavfile import write import librosa import numpy as np import torch import torch.nn as nn from torch.utils.data import Dataset from torch.utils.data import DataLoader, Dataset from tqdm import tqdm import gradio as gr import utils from config import config import torch import commons from text import cleaned_text_to_sequence, get_bert from tools.sentence import extrac, is_japanese, is_chinese, seconds_to_ass_time, extract_text_from_file, remove_annotations,extract_and_convert from text.cleaner import clean_text import utils from tools.translate import translate from models import SynthesizerTrn from text.symbols import symbols import sys import re import random import hashlib from fugashi import Tagger import jaconv import unidic import subprocess import requests from ebooklib import epub import PyPDF2 from PyPDF2 import PdfReader from bs4 import BeautifulSoup import jieba import romajitable webBase = { 'pyopenjtalk-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/', 'fugashi-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/', } languages = [ "Auto", "ZH", "JP"] modelPaths = [] modes = ['pyopenjtalk-V2.3'] if torch.cuda.is_available(): modes = ['pyopenjtalk-V2.3','fugashi-V2.3'] sentence_modes = ['sentence','paragraph'] net_g = None device = ( "cuda:0" if torch.cuda.is_available() else ( "mps" if sys.platform == "darwin" and torch.backends.mps.is_available() else "cpu" ) ) #device = "cpu" BandList = { "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"], "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], "Roselia":["友希那","紗夜","リサ","燐子","あこ"], "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], "Morfonica":["ましろ","瑠唯","つくし","七深","透子"], "MyGo":["燈","愛音","そよ","立希","楽奈"], "AveMujica":["祥子","睦","海鈴","にゃむ","初華"], "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"], "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"], "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"], "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"] } # 推理工具 def download_unidic(): try: Tagger() print("Tagger launch successfully.") except Exception as e: print("UNIDIC dictionary not found, downloading...") subprocess.run([sys.executable, "-m", "unidic", "download"]) print("Download completed.") def kanji_to_hiragana(text): global tagger output = "" # 更新正则表达式以更准确地区分文本和标点符号 segments = re.findall(r'[一-龥ぁ-んァ-ン\w]+|[^\一-龥ぁ-んァ-ン\w\s]', text, re.UNICODE) for segment in segments: if re.match(r'[一-龥ぁ-んァ-ン\w]+', segment): # 如果是单词或汉字,转换为平假名 for word in tagger(segment): kana = word.feature.kana or word.surface hiragana = jaconv.kata2hira(kana) # 将片假名转换为平假名 output += hiragana else: # 如果是标点符号,保持不变 output += segment return output def get_net_g(model_path: str, device: str, hps): net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ).to(device) _ = net_g.eval() _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) return net_g def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): style_text = None if style_text == "" else style_text norm_text, phone, tone, word2ph = clean_text(text, language_str) phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) if hps.data.add_blank: phone = commons.intersperse(phone, 0) tone = commons.intersperse(tone, 0) language = commons.intersperse(language, 0) for i in range(len(word2ph)): word2ph[i] = word2ph[i] * 2 word2ph[0] += 1 bert_ori = get_bert( norm_text, word2ph, language_str, device, style_text, style_weight ) del word2ph assert bert_ori.shape[-1] == len(phone), phone if language_str == "ZH": bert = bert_ori ja_bert = torch.randn(1024, len(phone)) en_bert = torch.randn(1024, len(phone)) elif language_str == "JP": bert = torch.randn(1024, len(phone)) ja_bert = bert_ori en_bert = torch.randn(1024, len(phone)) elif language_str == "EN": bert = torch.randn(1024, len(phone)) ja_bert = torch.randn(1024, len(phone)) en_bert = bert_ori else: raise ValueError("language_str should be ZH, JP or EN") assert bert.shape[-1] == len( phone ), f"Bert seq len {bert.shape[-1]} != {len(phone)}" phone = torch.LongTensor(phone) tone = torch.LongTensor(tone) language = torch.LongTensor(language) return bert, ja_bert, en_bert, phone, tone, language def infer( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, style_text=None, style_weight=0.7, language = "Auto", mode = 'pyopenjtalk-V2.3', skip_start=False, skip_end=False, ): if style_text == None: style_text = "" style_weight=0, if mode == 'fugashi-V2.3': text = kanji_to_hiragana(text) if is_japanese(text) else text if language == "JP": text = translate(text,"jp") if language == "ZH": text = translate(text,"zh") if language == "Auto": language= 'JP' if is_japanese(text) else 'ZH' #print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{sid}:{language}:{mode}:{skip_start}:{skip_end}') bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( text, language, hps, device, style_text=style_text, style_weight=style_weight, ) if skip_start: phones = phones[3:] tones = tones[3:] lang_ids = lang_ids[3:] bert = bert[:, 3:] ja_bert = ja_bert[:, 3:] en_bert = en_bert[:, 3:] if skip_end: phones = phones[:-2] tones = tones[:-2] lang_ids = lang_ids[:-2] bert = bert[:, :-2] ja_bert = ja_bert[:, :-2] en_bert = en_bert[:, :-2] with torch.no_grad(): x_tst = phones.to(device).unsqueeze(0) tones = tones.to(device).unsqueeze(0) lang_ids = lang_ids.to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) ja_bert = ja_bert.to(device).unsqueeze(0) en_bert = en_bert.to(device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) # emo = emo.to(device).unsqueeze(0) del phones speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) audio = ( net_g.infer( x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, ja_bert, en_bert, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, )[0][0, 0] .data.cpu() .float() .numpy() ) del ( x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, ) # , emo if torch.cuda.is_available(): torch.cuda.empty_cache() print("Success.") return audio def loadmodel(model): _ = net_g.eval() _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True) return "success" def generate_audio_and_srt_for_group( group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, speakerList, silenceTime, language, mode, skip_start, skip_end, style_text, style_weight, ): audio_fin = [] ass_entries = [] start_time = 0 #speaker = random.choice(cara_list) ass_header = """[Script Info] ; 我没意见 Title: Audiobook ScriptType: v4.00+ WrapStyle: 0 PlayResX: 640 PlayResY: 360 ScaledBorderAndShadow: yes [V4+ Styles] Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1 [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text """ for sentence in group: try: if len(sentence) > 1: FakeSpeaker = sentence.split("|")[0] print(FakeSpeaker) SpeakersList = re.split('\n', speakerList) if FakeSpeaker in list(hps.data.spk2id.keys()): speaker = FakeSpeaker for i in SpeakersList: if FakeSpeaker == i.split("|")[1]: speaker = i.split("|")[0] if sentence != '\n': text = (remove_annotations(sentence.split("|")[-1]).replace(" ","")+"。").replace(",。","。") if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3': #print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{speaker}:{language}:{mode}:{skip_start}:{skip_end}') audio = infer( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, speaker, style_text, style_weight, language, mode, skip_start, skip_end, ) silence_frames = int(silenceTime * 44010) if is_chinese(sentence) else int(silenceTime * 44010) silence_data = np.zeros((silence_frames,), dtype=audio.dtype) audio_fin.append(audio) audio_fin.append(silence_data) duration = len(audio) / sampling_rate print(duration) end_time = start_time + duration + silenceTime ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":"))) start_time = end_time except: pass wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav') ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass') write(wav_filename, sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin))) with open(ass_filename, 'w', encoding='utf-8') as f: f.write(ass_header + '\n'.join(ass_entries)) return (hps.data.sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin))) def generate_audio( inputFile, groupSize, filepath, silenceTime, speakerList, text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, style_text=None, style_weight=0.7, language = "Auto", mode = 'pyopenjtalk-V2.3', sentence_mode = 'sentence', skip_start=False, skip_end=False, ): if inputFile: text = extract_text_from_file(inputFile.name) sentence_mode = 'paragraph' if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3': if sentence_mode == 'sentence': audio = infer( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, style_text, style_weight, language, mode, skip_start, skip_end, ) return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio)) if sentence_mode == 'paragraph': GROUP_SIZE = groupSize directory_path = filepath if torch.cuda.is_available() else "books" if os.path.exists(directory_path): shutil.rmtree(directory_path) os.makedirs(directory_path) if language == 'Auto': sentences = extrac(extract_and_convert(text)) else: sentences = extrac(text) for i in range(0, len(sentences), GROUP_SIZE): group = sentences[i:i+GROUP_SIZE] if speakerList == "": speakerList = "无" result = generate_audio_and_srt_for_group( group, directory_path, i//GROUP_SIZE + 1, 44100, sid, sdp_ratio, noise_scale, noise_scale_w, length_scale, speakerList, silenceTime, language, mode, skip_start, skip_end, style_text, style_weight, ) if not torch.cuda.is_available(): return result return result #url = f'{webBase[mode]}?text={text}&speaker={sid}&sdp_ratio={sdp_ratio}&noise_scale={noise_scale}&noise_scale_w={noise_scale_w}&length_scale={length_scale}&language={language}&skip_start={skip_start}&skip_end={skip_end}' #print(url) #res = requests.get(url) #改用post res = requests.post(webBase[mode], json = { "groupSize": groupSize, "filepath": filepath, "silenceTime": silenceTime, "speakerList": speakerList, "text": text, "speaker": sid, "sdp_ratio": sdp_ratio, "noise_scale": noise_scale, "noise_scale_w": noise_scale_w, "length_scale": length_scale, "language": language, "skip_start": skip_start, "skip_end": skip_end, "mode": mode, "sentence_mode": sentence_mode, "style_text": style_text, "style_weight": style_weight }) audio = res.content with open('output.wav', 'wb') as code: code.write(audio) file_path = "output.wav" return file_path if __name__ == "__main__": if torch.cuda.is_available(): download_unidic() tagger = Tagger() for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'): for filename in filenames: modelPaths.append(os.path.join(dirpath, filename)) hps = utils.get_hparams_from_file('Data/BangDream/config.json') net_g = get_net_g( model_path=modelPaths[-1], device=device, hps=hps ) speaker_ids = hps.data.spk2id speakers = list(speaker_ids.keys()) with gr.Blocks() as app: gr.Markdown(value=""" [日语特化版(推荐)](https://huggingface.co/spaces/Mahiruoshi/BangStarlight),国内可用连接: https://mahiruoshi-BangStarlight.hf.space/\n [假名标注版](https://huggingface.co/spaces/Mahiruoshi/MyGO_VIts-bert),国内可用连接: https://mahiruoshi-MyGO-VIts-bert.hf.space/\n 该界面的真实链接(国内可用): https://mahiruoshi-bangdream-bert-vits2.hf.space/\n ([Bert-Vits2](https://github.com/Stardust-minus/Bert-VITS2) V2.3)少歌邦邦全员在线语音合成\n [好玩的](http://love.soyorin.top/)\n API: https://mahiruoshi-bert-vits2-api.hf.space/ \n 调用方式: https://mahiruoshi-bert-vits2-api.hf.space/?text={{speakText}}&speaker=chosen_speaker\n 推荐搭配[Legado开源阅读](https://github.com/gedoor/legado)或[聊天bot](https://github.com/Paraworks/BangDreamAi)使用\n 二创请标注作者:B站@Mahiroshi: https://space.bilibili.com/19874615\n 训练数据集归属:BangDream及少歌手游,提取自BestDori,[数据集获取流程](https://nijigaku.top/2023/09/29/Bestbushiroad%E8%AE%A1%E5%88%92-vits-%E9%9F%B3%E9%A2%91%E6%8A%93%E5%8F%96%E5%8F%8A%E6%95%B0%E6%8D%AE%E9%9B%86%E5%AF%B9%E9%BD%90/)\n BangDream数据集下载[链接](https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/%E7%88%AC%E8%99%AB/SortPathUrl.txt)\n !!!注意:huggingface容器仅用作展示,建议在右上角更多选项中克隆本项目或Docker运行app.py/server.py,环境参考requirements.txt\n""") for band in BandList: with gr.TabItem(band): for name in BandList[band]: with gr.TabItem(name): with gr.Row(): with gr.Column(): with gr.Row(): gr.Markdown( '