Spaces:
Sleeping
Sleeping
import numpy as np | |
np.random.seed(0) | |
import pickle | |
from sklearn.compose import ColumnTransformer | |
from sklearn.datasets import fetch_openml | |
from sklearn.pipeline import Pipeline | |
from sklearn.impute import SimpleImputer | |
from sklearn.preprocessing import StandardScaler, OneHotEncoder | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.model_selection import train_test_split | |
from sklearn import tree | |
from fastapi import FastAPI, HTTPException | |
from fastapi.responses import HTMLResponse | |
from pydantic import BaseModel | |
from typing import List | |
class InputData(BaseModel): | |
data: List[float] | |
# Inicializar la aplicaci贸n FastAPI | |
app = FastAPI() | |
def build_model(): | |
with open('miarbol.pkl', 'rb') as fid: | |
miarbol = pickle.load(fid) | |
return miarbol | |
miarbol = build_model() | |
# Ruta de predicci贸n | |
async def predict(data: InputData): | |
print(f"Data: {data}") | |
global miarbol | |
try: | |
# Convertir la lista de entrada a un array de NumPy para la predicci贸n | |
input_data = np.array(data.data).reshape( | |
1, -1 | |
) # Asumiendo que la entrada debe ser de forma (1, num_features) | |
prediction = miarbol.predict(input_data).round() | |
return {"prediction": prediction.tolist()} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) |