import numpy as np np.random.seed(0) import pickle from sklearn.compose import ColumnTransformer from sklearn.datasets import fetch_openml from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn import tree from fastapi import FastAPI, HTTPException from fastapi.responses import HTMLResponse from pydantic import BaseModel from typing import List class InputData(BaseModel): data: List[float] # Inicializar la aplicación FastAPI app = FastAPI() def build_model(): with open('miarbol.pkl', 'rb') as fid: miarbol = pickle.load(fid) return miarbol miarbol = build_model() # Ruta de predicción @app.post("/predict/") async def predict(data: InputData): print(f"Data: {data}") global miarbol try: # Convertir la lista de entrada a un array de NumPy para la predicción input_data = np.array(data.data).reshape( 1, -1 ) # Asumiendo que la entrada debe ser de forma (1, num_features) prediction = miarbol.predict(input_data).round() return {"prediction": prediction.tolist()} except Exception as e: raise HTTPException(status_code=500, detail=str(e))