import os import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Убедись, что токен загружен из переменной окружения или напрямую HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Загрузка токена из .env # Инициализация клиента client = InferenceClient("sambanovasystems/SambaLingo-Russian-Chat", token=HF_TOKEN) # Функция для ответа на сообщения def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Настройка интерфейса Gradio demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()