Spaces:
Sleeping
Sleeping
import argparse | |
import concurrent.futures | |
import sys | |
import warnings | |
import numpy as np | |
import torch | |
from tqdm import tqdm | |
import utils | |
from config import config | |
warnings.filterwarnings("ignore", category=UserWarning) | |
from pyannote.audio import Inference, Model | |
model = Model.from_pretrained("pyannote/wespeaker-voxceleb-resnet34-LM") | |
inference = Inference(model, window="whole") | |
device = torch.device(config.style_gen_config.device) | |
inference.to(device) | |
def extract_style_vector(wav_path): | |
return inference(wav_path) | |
def save_style_vector(wav_path): | |
style_vec = extract_style_vector(wav_path) | |
# `test.wav` -> `test.wav.npy` | |
np.save(f"{wav_path}.npy", style_vec) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-c", "--config", type=str, default=config.style_gen_config.config_path | |
) | |
parser.add_argument( | |
"--num_processes", type=int, default=config.style_gen_config.num_processes | |
) | |
args, _ = parser.parse_known_args() | |
config_path = args.config | |
num_processes = args.num_processes | |
hps = utils.get_hparams_from_file(config_path) | |
device = config.style_gen_config.device | |
lines = [] | |
with open(hps.data.training_files, encoding="utf-8") as f: | |
lines.extend(f.readlines()) | |
with open(hps.data.validation_files, encoding="utf-8") as f: | |
lines.extend(f.readlines()) | |
wavnames = [line.split("|")[0] for line in lines] | |
with concurrent.futures.ThreadPoolExecutor(max_workers=num_processes) as executor: | |
list( | |
tqdm( | |
executor.map(save_style_vector, wavnames), | |
total=len(wavnames), | |
file=sys.stdout, | |
) | |
) | |
print(f"Finished generating style vectors! total: {len(wavnames)} npy files.") | |