""" @Desc: 全局配置文件读取 """ import argparse import yaml from typing import Dict, List import os import shutil import sys class Resample_config: """重采样配置""" def __init__(self, in_dir: str, out_dir: str, sampling_rate: int = 44100): self.sampling_rate: int = sampling_rate # 目标采样率 self.in_dir: str = in_dir # 待处理音频目录路径 self.out_dir: str = out_dir # 重采样输出路径 @classmethod def from_dict(cls, dataset_path: str, data: Dict[str, any]): """从字典中生成实例""" # 不检查路径是否有效,此逻辑在resample.py中处理 data["in_dir"] = os.path.join(dataset_path, data["in_dir"]) data["out_dir"] = os.path.join(dataset_path, data["out_dir"]) return cls(**data) class Preprocess_text_config: """数据预处理配置""" def __init__( self, transcription_path: str, cleaned_path: str, train_path: str, val_path: str, config_path: str, val_per_lang: int = 5, max_val_total: int = 10000, clean: bool = True, ): self.transcription_path: str = transcription_path # 原始文本文件路径,文本格式应为{wav_path}|{speaker_name}|{language}|{text}。 self.cleaned_path: str = cleaned_path # 数据清洗后文本路径,可以不填。不填则将在原始文本目录生成 self.train_path: str = train_path # 训练集路径,可以不填。不填则将在原始文本目录生成 self.val_path: str = val_path # 验证集路径,可以不填。不填则将在原始文本目录生成 self.config_path: str = config_path # 配置文件路径 self.val_per_lang: int = val_per_lang # 每个speaker的验证集条数 self.max_val_total: int = max_val_total # 验证集最大条数,多于的会被截断并放到训练集中 self.clean: bool = clean # 是否进行数据清洗 @classmethod def from_dict(cls, dataset_path: str, data: Dict[str, any]): """从字典中生成实例""" data["transcription_path"] = os.path.join( dataset_path, data["transcription_path"] ) if data["cleaned_path"] == "" or data["cleaned_path"] is None: data["cleaned_path"] = None else: data["cleaned_path"] = os.path.join(dataset_path, data["cleaned_path"]) data["train_path"] = os.path.join(dataset_path, data["train_path"]) data["val_path"] = os.path.join(dataset_path, data["val_path"]) data["config_path"] = os.path.join(dataset_path, data["config_path"]) return cls(**data) class Bert_gen_config: """bert_gen 配置""" def __init__( self, config_path: str, num_processes: int = 2, device: str = "cuda", use_multi_device: bool = False, ): self.config_path = config_path self.num_processes = num_processes self.device = device self.use_multi_device = use_multi_device @classmethod def from_dict(cls, dataset_path: str, data: Dict[str, any]): data["config_path"] = os.path.join(dataset_path, data["config_path"]) return cls(**data) class Style_gen_config: """style_gen 配置""" def __init__( self, config_path: str, num_processes: int = 2, device: str = "cuda", ): self.config_path = config_path self.num_processes = num_processes self.device = device @classmethod def from_dict(cls, dataset_path: str, data: Dict[str, any]): data["config_path"] = os.path.join(dataset_path, data["config_path"]) return cls(**data) class Train_ms_config: """训练配置""" def __init__( self, config_path: str, env: Dict[str, any], # base: Dict[str, any], model: str, num_workers: int, spec_cache: bool, keep_ckpts: int, ): self.env = env # 需要加载的环境变量 # self.base = base # 底模配置 self.model = model # 训练模型存储目录,该路径为相对于dataset_path的路径,而非项目根目录 self.config_path = config_path # 配置文件路径 self.num_workers = num_workers # worker数量 self.spec_cache = spec_cache # 是否启用spec缓存 self.keep_ckpts = keep_ckpts # ckpt数量 @classmethod def from_dict(cls, dataset_path: str, data: Dict[str, any]): # data["model"] = os.path.join(dataset_path, data["model"]) data["config_path"] = os.path.join(dataset_path, data["config_path"]) return cls(**data) class Webui_config: """webui 配置""" def __init__( self, device: str, model: str, config_path: str, language_identification_library: str, port: int = 7860, share: bool = False, debug: bool = False, ): self.device: str = device self.model: str = model # 端口号 self.config_path: str = config_path # 是否公开部署,对外网开放 self.port: int = port # 是否开启debug模式 self.share: bool = share # 模型路径 self.debug: bool = debug # 配置文件路径 self.language_identification_library: str = ( language_identification_library # 语种识别库 ) @classmethod def from_dict(cls, dataset_path: str, data: Dict[str, any]): data["config_path"] = os.path.join(dataset_path, data["config_path"]) data["model"] = os.path.join(dataset_path, data["model"]) return cls(**data) class Server_config: def __init__( self, models: List[Dict[str, any]], port: int = 5000, device: str = "cuda" ): self.models: List[Dict[str, any]] = models # 需要加载的所有模型的配置 self.port: int = port # 端口号 self.device: str = device # 模型默认使用设备 @classmethod def from_dict(cls, data: Dict[str, any]): return cls(**data) class Translate_config: """翻译api配置""" def __init__(self, app_key: str, secret_key: str): self.app_key = app_key self.secret_key = secret_key @classmethod def from_dict(cls, data: Dict[str, any]): return cls(**data) class Config: def __init__(self, config_path: str): if not os.path.isfile(config_path) and os.path.isfile("default_config.yml"): shutil.copy(src="default_config.yml", dst=config_path) print( f"A configuration file {config_path} has been generated based on the default configuration file default_config.yml." ) print( "If you have no special needs, please do not modify default_config.yml." ) # sys.exit(0) with open(file=config_path, mode="r", encoding="utf-8") as file: yaml_config: Dict[str, any] = yaml.safe_load(file.read()) model_name: str = yaml_config["model_name"] self.model_name: str = model_name if "dataset_path" in yaml_config: dataset_path = yaml_config["dataset_path"] else: dataset_path = f"Data/{model_name}" self.out_dir = yaml_config["out_dir"] # openi_token: str = yaml_config["openi_token"] self.dataset_path: str = dataset_path # self.mirror: str = yaml_config["mirror"] # self.openi_token: str = openi_token self.resample_config: Resample_config = Resample_config.from_dict( dataset_path, yaml_config["resample"] ) self.preprocess_text_config: Preprocess_text_config = ( Preprocess_text_config.from_dict( dataset_path, yaml_config["preprocess_text"] ) ) self.bert_gen_config: Bert_gen_config = Bert_gen_config.from_dict( dataset_path, yaml_config["bert_gen"] ) self.style_gen_config: Style_gen_config = Style_gen_config.from_dict( dataset_path, yaml_config["style_gen"] ) self.train_ms_config: Train_ms_config = Train_ms_config.from_dict( dataset_path, yaml_config["train_ms"] ) self.webui_config: Webui_config = Webui_config.from_dict( dataset_path, yaml_config["webui"] ) self.server_config: Server_config = Server_config.from_dict( yaml_config["server"] ) # self.translate_config: Translate_config = Translate_config.from_dict( # yaml_config["translate"] # ) parser = argparse.ArgumentParser() # 为避免与以前的config.json起冲突,将其更名如下 parser.add_argument("-y", "--yml_config", type=str, default="config.yml") args, _ = parser.parse_known_args() config = Config(args.yml_config)