Spaces:
Sleeping
Sleeping
import pandas as pd | |
from huggingface_hub import snapshot_download | |
import joblib | |
import numpy as np | |
import streamlit as st | |
# Load the model and vectorizer from the repository | |
repo_id = "Makima57/sentiment-model-svc" | |
model_path = snapshot_download(repo_id=repo_id) | |
# Load saved SVC model | |
svc_model = joblib.load(f"{model_path}/svc_model.pkl") | |
# Load saved TfidfVectorizer | |
vectorizer = joblib.load(f"{model_path}/vectorizer.pkl") | |
# Function to analyze sentiment | |
def analyze_sentiment(text): | |
text_vectorized = vectorizer.transform([text]) | |
text_dense = text_vectorized.toarray() | |
sentiment = svc_model.predict(text_dense) | |
if sentiment[0] == 0: | |
return "Negative" | |
elif sentiment[0] == 1: | |
return "Neutral" | |
else: | |
return "Positive" | |
# Streamlit app | |
st.title('Sentiment Analysis App') | |
st.write('This app analyzes the sentiment of a given text using the SVC model.') | |
text = st.text_input('Enter a text to analyze sentiment') | |
if st.button('Analyze Sentiment'): | |
sentiment = analyze_sentiment(text) | |
st.write('The sentiment of the text is:', sentiment) | |