import pandas as pd from huggingface_hub import snapshot_download import joblib import numpy as np import streamlit as st # Load the model and vectorizer from the repository repo_id = "Makima57/sentiment-model-svc" model_path = snapshot_download(repo_id=repo_id) # Load saved SVC model svc_model = joblib.load(f"{model_path}/svc_model.pkl") # Load saved TfidfVectorizer vectorizer = joblib.load(f"{model_path}/vectorizer.pkl") # Function to analyze sentiment def analyze_sentiment(text): text_vectorized = vectorizer.transform([text]) text_dense = text_vectorized.toarray() sentiment = svc_model.predict(text_dense) if sentiment[0] == 0: return "Negative" elif sentiment[0] == 1: return "Neutral" else: return "Positive" # Streamlit app st.title('Sentiment Analysis App') st.write('This app analyzes the sentiment of a given text using the SVC model.') text = st.text_input('Enter a text to analyze sentiment') if st.button('Analyze Sentiment'): sentiment = analyze_sentiment(text) st.write('The sentiment of the text is:', sentiment)