File size: 9,417 Bytes
ab990a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df8b34b
ab68b3c
 
ab990a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import streamlit as st
import pandas as pd
from deep_translator import GoogleTranslator
from bertopic import BERTopic
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import CountVectorizer
import base64
from io import BytesIO
import plotly.graph_objects as go
import plotly.subplots as sp
import plotly.express as px


def translate_feedback(feedback_df, column_name):
    feedback_df["translated"] = "-"  # Add a new column "translated" and initialize all rows with "-"

    for i, feedback in enumerate(feedback_df[column_name]):
        try:
            translation = GoogleTranslator(source='auto', target='en').translate(feedback)
            feedback_df.loc[i, "translated"] = translation  # Store the translation in the "translated" column
        except Exception as e:
            feedback_df.loc[i, "translated"] = "-"  # Store "-" in the "translated" column if an error occurs

    feedback_df = feedback_df[feedback_df["translated"] != "-"]  # Remove "-" rows
    return feedback_df

@st.cache
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv().encode('utf-8')

def download_csv(df):
    csv = df.to_csv(index=False)
    b64 = base64.b64encode(csv.encode()).decode()  # Encode the DataFrame as base64
    href = f'<a href="data:file/csv;base64,{b64}" download="translated_feedback.csv">Download CSV file</a>'
    return href

def topics_over_time(topic_model, dataframe, training_column):
    timestamps = list(dataframe.day.values)
    feedback_list = list(dataframe[training_column])
    topics_over_time = topic_model.topics_over_time(feedback_list, timestamps, global_tuning=True, evolution_tuning=True)
    f = topic_model.visualize_topics_over_time(topics_over_time, custom_labels=True)
    f.update_layout(width=800,height=500)
    return f
    
def area_over_time(topic_model, df, training_column, datetime_column):
    df['Topic'] = topic_model.get_document_info(df[training_column])["Name"].values

    df[datetime_column] = pd.to_datetime(df[datetime_column])
    df['year'] = df[datetime_column].dt.year
    df['month'] = df[datetime_column].dt.month

    # Group the data by year, month, and topic
    grouped = df.groupby(['year', 'month', 'Topic'])[training_column].count().reset_index()

    # Normalize the document counts by the total document count for each month and topic
    grouped['total_count'] = grouped.groupby(['year', 'month'])[training_column].transform('sum')
    grouped['document_pct'] = grouped[training_column] / grouped['total_count'] * 100

    # Pivot the data to create a table with months as rows, topics as columns, and document percentages as values
    pivoted = pd.pivot_table(grouped, index=['year', 'month'], columns='Topic', values='document_pct', fill_value=0)
    pivoted = pivoted.reset_index()

    # Melt the data to create a long format with separate rows for each topic
    melted = pd.melt(pivoted, id_vars=['year', 'month'], var_name='Topic', value_name='document_pct')

    # Create the interactive plot using Plotly Express
    fig = px.area(melted, x='month', y='document_pct', color='Topic', facet_col='year', facet_col_wrap=3,
                  title='Distribution of Documents by Topic and Month (Relative to 100%)',
                  labels={'month': 'Month', 'document_pct': 'Document Percentage', 'Topic': 'Topic', 'year': 'Year'},
                  hover_data={'month': False, 'document_pct': ':.2f'})

    return fig

# Sidebar configuration
st.sidebar.title("Translation and Analysis App")
tab = st.sidebar.selectbox("Select Tab", ("Translate", "Analyse Feedback"))


if tab == "Translate":
    st.title("Translate Feedback")
    file = st.file_uploader("Upload CSV or Excel file", type=["csv", "xlsx"], accept_multiple_files=False)
    
    if file is not None:
        file.seek(0)
        feedback_df = pd.read_csv(file, low_memory=False, on_bad_lines='skip', engine='c') if file.name.endswith(".csv") else pd.read_excel(file)
        st.write('**Data Head:**')
        st.write(feedback_df.head())
        column_name = st.selectbox("Select Column", feedback_df.columns)
        feedback_df = feedback_df.dropna(subset=[column_name])
        feedback_df = feedback_df.reset_index(drop=True)
        if st.button("Translate"):
            translated_df = translate_feedback(feedback_df, column_name)
            csv = convert_df(translated_df)

            st.write('**Translated Data Head:**')
            st.write(translated_df.head())

            st.download_button(
                label="Download data as CSV",
                data=csv,
                file_name='translated_data.csv',
                mime='text/csv',
            )

            

elif tab == "Analyse Feedback":
    # Analyse Feedback tab code
    st.title("Analyse Feedback")

    file = st.file_uploader("Upload CSV or Excel file", type=["csv", "xlsx"])

    if file is not None:
        df = pd.read_csv(file, on_bad_lines='skip') if file.name.endswith(".csv") else pd.read_excel(file)
        st.write('**Data Head:**')
        st.write(df.head())
        column_names = df.columns.tolist()

        datetime_column = st.selectbox("Select Datetime Column", column_names + ["None"])
        feedback_column = st.selectbox("Select Feedback Column", column_names)

        model_select = st.selectbox(
            "Select model to train:",
            [
                'all-mpnet-base-v2',
                'all-distilroberta-v1',
                'distiluse-base-multilingual-cased-v2',
                'multi-qa-mpnet-base-dot-v1',
                'multi-qa-distilbert-cos-v1',
                'paraphrase-multilingual-mpnet-base-v2',
                'BAAI/bge-small-en-v1.5',
                'Cohere/Cohere-embed-english-v3.0'
            ]
        )

        if st.button("Train Model"):
            if model_select is not None:
                new_df = df.copy()
                if datetime_column != "None":
                    new_df[datetime_column] = pd.to_datetime(new_df[datetime_column])
                sentence_model = SentenceTransformer(model_select)

                vectorizer_model = CountVectorizer(stop_words="english")

                # Initialize a BERTopic model with the SentenceTransformer embeddings
                my_model = BERTopic(
                    language="en",
                    calculate_probabilities=True,
                    verbose=True,
                    n_gram_range=(1, 3),
                    embedding_model=sentence_model,
                    vectorizer_model=vectorizer_model,
                    nr_topics = 15
                )

                # Preprocess the data by replacing missing values with empty strings
                new_df[feedback_column] = new_df[feedback_column].fillna('')
                new_df.reset_index(inplace = True,drop = True)

                # Fit the BERTopic model on the dataframe
                my_model.fit(new_df[feedback_column])
                st.success("Model trained successfully")

                # Store the trained model in session state
                st.session_state.trained_model = my_model
                st.session_state.new_df = new_df
                st.session_state.feedback_colomn = feedback_column
                st.session_state.datetime_column = datetime_column

        if "trained_model" in st.session_state:
            trained_model = st.session_state.trained_model
            new_df = st.session_state.new_df
            new_feedback_column = st.session_state.feedback_colomn
            

            visualization_options = [
                "Visualize documents",
                "Topic Hierarchy",
                "Barchart",
                "Topics over time",
                "Representative docs per topic"
            ]
            selected_visualization = st.selectbox("Select Visualization", visualization_options)

            if selected_visualization == "Barchart":
                umap_fig = trained_model.visualize_barchart(n_words=5)
                st.plotly_chart(umap_fig)
            elif selected_visualization == "Visualize documents":
                viz_doc = trained_model.visualize_documents(new_df[new_feedback_column])
                st.plotly_chart(viz_doc)
            elif selected_visualization == "Topic Hierarchy":
                tsne_fig = trained_model.visualize_hierarchy(top_n_topics=20)
                st.plotly_chart(tsne_fig)
            elif selected_visualization == "Topics over time":
                time_fig = area_over_time(trained_model, new_df, new_feedback_column, datetime_column)
                st.plotly_chart(time_fig)
            elif selected_visualization == "Representative docs per topic":    
                st.write(trained_model.get_representative_docs())

            result = pd.merge(new_df[feedback_column], 
                              trained_model.get_document_info(new_df[feedback_column]),
                              left_on=feedback_column,
                              right_on='Document',
                              how = 'left'
                              )

            feedback_and_docs = convert_df(result)
            st.download_button(
                label="Download documents and topics",
                data=feedback_and_docs,
                file_name='document_info.csv',
                mime='text/csv',
            )