Spaces:
Sleeping
Sleeping
File size: 9,417 Bytes
ab990a6 df8b34b ab68b3c ab990a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import streamlit as st
import pandas as pd
from deep_translator import GoogleTranslator
from bertopic import BERTopic
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import CountVectorizer
import base64
from io import BytesIO
import plotly.graph_objects as go
import plotly.subplots as sp
import plotly.express as px
def translate_feedback(feedback_df, column_name):
feedback_df["translated"] = "-" # Add a new column "translated" and initialize all rows with "-"
for i, feedback in enumerate(feedback_df[column_name]):
try:
translation = GoogleTranslator(source='auto', target='en').translate(feedback)
feedback_df.loc[i, "translated"] = translation # Store the translation in the "translated" column
except Exception as e:
feedback_df.loc[i, "translated"] = "-" # Store "-" in the "translated" column if an error occurs
feedback_df = feedback_df[feedback_df["translated"] != "-"] # Remove "-" rows
return feedback_df
@st.cache
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
def download_csv(df):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode() # Encode the DataFrame as base64
href = f'<a href="data:file/csv;base64,{b64}" download="translated_feedback.csv">Download CSV file</a>'
return href
def topics_over_time(topic_model, dataframe, training_column):
timestamps = list(dataframe.day.values)
feedback_list = list(dataframe[training_column])
topics_over_time = topic_model.topics_over_time(feedback_list, timestamps, global_tuning=True, evolution_tuning=True)
f = topic_model.visualize_topics_over_time(topics_over_time, custom_labels=True)
f.update_layout(width=800,height=500)
return f
def area_over_time(topic_model, df, training_column, datetime_column):
df['Topic'] = topic_model.get_document_info(df[training_column])["Name"].values
df[datetime_column] = pd.to_datetime(df[datetime_column])
df['year'] = df[datetime_column].dt.year
df['month'] = df[datetime_column].dt.month
# Group the data by year, month, and topic
grouped = df.groupby(['year', 'month', 'Topic'])[training_column].count().reset_index()
# Normalize the document counts by the total document count for each month and topic
grouped['total_count'] = grouped.groupby(['year', 'month'])[training_column].transform('sum')
grouped['document_pct'] = grouped[training_column] / grouped['total_count'] * 100
# Pivot the data to create a table with months as rows, topics as columns, and document percentages as values
pivoted = pd.pivot_table(grouped, index=['year', 'month'], columns='Topic', values='document_pct', fill_value=0)
pivoted = pivoted.reset_index()
# Melt the data to create a long format with separate rows for each topic
melted = pd.melt(pivoted, id_vars=['year', 'month'], var_name='Topic', value_name='document_pct')
# Create the interactive plot using Plotly Express
fig = px.area(melted, x='month', y='document_pct', color='Topic', facet_col='year', facet_col_wrap=3,
title='Distribution of Documents by Topic and Month (Relative to 100%)',
labels={'month': 'Month', 'document_pct': 'Document Percentage', 'Topic': 'Topic', 'year': 'Year'},
hover_data={'month': False, 'document_pct': ':.2f'})
return fig
# Sidebar configuration
st.sidebar.title("Translation and Analysis App")
tab = st.sidebar.selectbox("Select Tab", ("Translate", "Analyse Feedback"))
if tab == "Translate":
st.title("Translate Feedback")
file = st.file_uploader("Upload CSV or Excel file", type=["csv", "xlsx"], accept_multiple_files=False)
if file is not None:
file.seek(0)
feedback_df = pd.read_csv(file, low_memory=False, on_bad_lines='skip', engine='c') if file.name.endswith(".csv") else pd.read_excel(file)
st.write('**Data Head:**')
st.write(feedback_df.head())
column_name = st.selectbox("Select Column", feedback_df.columns)
feedback_df = feedback_df.dropna(subset=[column_name])
feedback_df = feedback_df.reset_index(drop=True)
if st.button("Translate"):
translated_df = translate_feedback(feedback_df, column_name)
csv = convert_df(translated_df)
st.write('**Translated Data Head:**')
st.write(translated_df.head())
st.download_button(
label="Download data as CSV",
data=csv,
file_name='translated_data.csv',
mime='text/csv',
)
elif tab == "Analyse Feedback":
# Analyse Feedback tab code
st.title("Analyse Feedback")
file = st.file_uploader("Upload CSV or Excel file", type=["csv", "xlsx"])
if file is not None:
df = pd.read_csv(file, on_bad_lines='skip') if file.name.endswith(".csv") else pd.read_excel(file)
st.write('**Data Head:**')
st.write(df.head())
column_names = df.columns.tolist()
datetime_column = st.selectbox("Select Datetime Column", column_names + ["None"])
feedback_column = st.selectbox("Select Feedback Column", column_names)
model_select = st.selectbox(
"Select model to train:",
[
'all-mpnet-base-v2',
'all-distilroberta-v1',
'distiluse-base-multilingual-cased-v2',
'multi-qa-mpnet-base-dot-v1',
'multi-qa-distilbert-cos-v1',
'paraphrase-multilingual-mpnet-base-v2',
'BAAI/bge-small-en-v1.5',
'Cohere/Cohere-embed-english-v3.0'
]
)
if st.button("Train Model"):
if model_select is not None:
new_df = df.copy()
if datetime_column != "None":
new_df[datetime_column] = pd.to_datetime(new_df[datetime_column])
sentence_model = SentenceTransformer(model_select)
vectorizer_model = CountVectorizer(stop_words="english")
# Initialize a BERTopic model with the SentenceTransformer embeddings
my_model = BERTopic(
language="en",
calculate_probabilities=True,
verbose=True,
n_gram_range=(1, 3),
embedding_model=sentence_model,
vectorizer_model=vectorizer_model,
nr_topics = 15
)
# Preprocess the data by replacing missing values with empty strings
new_df[feedback_column] = new_df[feedback_column].fillna('')
new_df.reset_index(inplace = True,drop = True)
# Fit the BERTopic model on the dataframe
my_model.fit(new_df[feedback_column])
st.success("Model trained successfully")
# Store the trained model in session state
st.session_state.trained_model = my_model
st.session_state.new_df = new_df
st.session_state.feedback_colomn = feedback_column
st.session_state.datetime_column = datetime_column
if "trained_model" in st.session_state:
trained_model = st.session_state.trained_model
new_df = st.session_state.new_df
new_feedback_column = st.session_state.feedback_colomn
visualization_options = [
"Visualize documents",
"Topic Hierarchy",
"Barchart",
"Topics over time",
"Representative docs per topic"
]
selected_visualization = st.selectbox("Select Visualization", visualization_options)
if selected_visualization == "Barchart":
umap_fig = trained_model.visualize_barchart(n_words=5)
st.plotly_chart(umap_fig)
elif selected_visualization == "Visualize documents":
viz_doc = trained_model.visualize_documents(new_df[new_feedback_column])
st.plotly_chart(viz_doc)
elif selected_visualization == "Topic Hierarchy":
tsne_fig = trained_model.visualize_hierarchy(top_n_topics=20)
st.plotly_chart(tsne_fig)
elif selected_visualization == "Topics over time":
time_fig = area_over_time(trained_model, new_df, new_feedback_column, datetime_column)
st.plotly_chart(time_fig)
elif selected_visualization == "Representative docs per topic":
st.write(trained_model.get_representative_docs())
result = pd.merge(new_df[feedback_column],
trained_model.get_document_info(new_df[feedback_column]),
left_on=feedback_column,
right_on='Document',
how = 'left'
)
feedback_and_docs = convert_df(result)
st.download_button(
label="Download documents and topics",
data=feedback_and_docs,
file_name='document_info.csv',
mime='text/csv',
)
|