File size: 8,712 Bytes
9ac0ba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Importing required Libraries
import streamlit as st
import pandas as pd
import numpy as np
import os, pickle
from sklearn.tree import DecisionTreeRegressor
from sklearn import preprocessing

# Setting up page configuration and directory path
st.set_page_config(page_title="Sales Forecasting App", page_icon="🐞", layout="centered")
DIRPATH = os.path.dirname(os.path.realpath(__file__))

# Setting background image
import base64
def add_bg_from_local(image_file):
    with open(image_file, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read())
    st.markdown(
    f"""
    <style>
    .stApp {{
        background-image: url(data:image/{"jpg"};base64,{encoded_string.decode()});
        background-size: cover
    }}
    </style>
    """,
    unsafe_allow_html=True
    )
add_bg_from_local('background.jpg')

# Setting up logo
left1, left2, mid,right1, right2 = st.columns(5)
with mid:
    st.image("logo.jpg", use_column_width=True)

# Setting up Sidebar
social_acc = ['Data Field Description', 'EDA', 'About App']
social_acc_nav = st.sidebar.radio('**INFORMATION SECTION**', social_acc)

if social_acc_nav == 'Data Field Description':
    st.sidebar.markdown("<h2 style='text-align: center;'> Data Field Description </h2> ", unsafe_allow_html=True)
    st.sidebar.markdown("**Date:** The date you want to predict sales  for")
    st.sidebar.markdown("**Family:** identifies the type of product sold")
    st.sidebar.markdown("**Onpromotion:** gives the total number of items in a product family that are being promoted at a store at a given date")
    st.sidebar.markdown("**Store Number:** identifies the store at which the products are sold")
    st.sidebar.markdown("**Holiday Locale:** provide information about the locale where holiday is celebrated")

elif social_acc_nav == 'EDA':
    st.sidebar.markdown("<h2 style='text-align: center;'> Exploratory Data Analysis </h2> ", unsafe_allow_html=True)
    st.sidebar.markdown('''---''')
    st.sidebar.markdown('''The exploratory data analysis of this project can be find in a Jupyter notebook from the linl below''')
    st.sidebar.markdown("[Open Notebook](https://github.com/Kyei-frank/Regression-Project-Store-Sales--Time-Series-Forecasting/blob/main/project_workflow.ipynb)")

elif social_acc_nav == 'About App':
    st.sidebar.markdown("<h2 style='text-align: center;'> Sales Forecasting App </h2> ", unsafe_allow_html=True)
    st.sidebar.markdown('''---''')
    st.sidebar.markdown("This App predicts the sales for product families sold at Favorita stores using regression model.")
    st.sidebar.markdown("")
    st.sidebar.markdown("[ Visit Github Repository for more information](https://github.com/Kyei-frank/Regression-Project-Store-Sales--Time-Series-Forecasting)")

# Loading Machine Learning Objects
@st.cache()
def load_saved_objects(file_path = 'ML_items'):
    # Function to load saved objects
    with open('ML_items', 'rb') as file:
        loaded_object = pickle.load(file)
        
    return loaded_object

# Instantiating ML_items
Loaded_object = load_saved_objects(file_path = 'ML_items')
model, encoder, train_data, stores, holidays_event = Loaded_object['model'], Loaded_object['encoder'], Loaded_object['train_data'], Loaded_object['stores'], Loaded_object['holidays_event']

# Setting Function for extracting Calendar features
@st.cache()
def getDateFeatures(df, date):
    df['date'] = pd.to_datetime(df['date'])
    df['month'] = df.date.dt.month
    df['day_of_month'] = df.date.dt.day
    df['day_of_year'] = df.date.dt.dayofyear
    df['week_of_year'] = df.date.dt.isocalendar().week
    df['day_of_week'] = df.date.dt.dayofweek
    df['year'] = df.date.dt.year
    df['is_weekend']= np.where(df['day_of_week'] > 4, 1, 0)
    df['is_month_start']= df.date.dt.is_month_start.astype(int)
    df['is_month_end']= df.date.dt.is_month_end.astype(int)
    df['quarter']= df.date.dt.quarter
    df['is_quarter_start']= df.date.dt.is_quarter_start.astype(int)
    df['is_quarter_end']= df.date.dt.is_quarter_end.astype(int)
    df['is_year_start']= df.date.dt.is_year_start.astype(int)
    
    return df

# Setting up variables for input data
@st.cache()
def setup(tmp_df_file):
    "Setup the required elements like files, models, global variables, etc"
    pd.DataFrame(
        dict(
            date=[],
            store_nbr=[],
            family=[],
            onpromotion=[],
            city=[],
            state=[],
            store_type=[],
            cluster=[],
            day_type=[],
            locale=[],
            locale_name=[],
        )
    ).to_csv(tmp_df_file, index=False)

# Setting up a file to save our input data
tmp_df_file = os.path.join(DIRPATH, "tmp", "data.csv")
setup(tmp_df_file)

# setting Title for forms
st.markdown("<h2 style='text-align: center;'> Sales Prediction </h2> ", unsafe_allow_html=True)
st.markdown("<h7 style='text-align: center;'> Fill in the details below and click on SUBMIT button to make a prediction for a specific date and item </h7> ", unsafe_allow_html=True)

# Creating columns for for input data(forms)
left_col, mid_col, right_col = st.columns(3)

# Developing forms to collect input data
with st.form(key="information", clear_on_submit=True):
    
    # Setting up input data for 1st column
    left_col.markdown("**PRODUCT DATA**")
    date = left_col.date_input("Prediction Date:")
    family = left_col.selectbox("Item family:", options= list(train_data["family"].unique()))
    onpromotion = left_col.selectbox("Onpromotion code:", options= set(train_data["onpromotion"].unique()))
    store_nbr = left_col.selectbox("Store Number:", options= set(stores["store_nbr"].unique()))
    
    # Setting up input data for 2nd column
    mid_col.markdown("**STORE DATA**")
    city = mid_col.selectbox("City:", options= set(stores["city"].unique()))
    state = mid_col.selectbox("State:", options= list(stores["state"].unique()))
    cluster = mid_col.selectbox("Store Cluster:", options= list(stores["cluster"].unique()))
    store_type = mid_col.radio("Store Type:", options= set(stores["store_type"].unique()), horizontal = True)

    # Setting up input data for 3rd column
    right_col.markdown("**ADDITIONAL DATA**")
    check= right_col.checkbox("Is it a Holiday or weekend?")
    if check:
        right_col.write('Fill the following information on Day Type')
        day_type = right_col.selectbox("Holiday:", options= ('Holiday','Special Day:Transfered/Additional Holiday','No Work/Weekend'))
        locale= right_col.selectbox("Holiday Locale:", options= list(holidays_event["locale"].unique()))
        locale_name= right_col.selectbox("Locale Name:", options= list(holidays_event["locale_name"].unique()))
    else:
        day_type = 'Workday'
        locale = 'National'
        locale_name= 'Ecuador'
 
    submitted = st.form_submit_button(label="Submit")

# Setting up background operations after submitting forms
if submitted:
    # Saving input data as csv after submission
    pd.read_csv(tmp_df_file).append(
        dict(
                date = date,
                store_nbr = store_nbr,
                family=family,
                onpromotion= onpromotion,
                city=city,
                state=state,
                store_type=store_type,
                cluster=cluster,
                day_type=day_type,
                locale=locale,
                locale_name=locale_name
            ),
            ignore_index=True,
    ).to_csv(tmp_df_file, index=False)
    st.balloons()

    # Converting input data to a dataframe for prediction
    df = pd.read_csv(tmp_df_file)
    df= df.copy()
        
    # Getting date Features
    processed_data= getDateFeatures(df, 'date')
    processed_data= processed_data.drop(columns=['date'])
    
    # Encoding Categorical Variables
    encoder = preprocessing.LabelEncoder()
    cols = ['family', 'city', 'state', 'store_type', 'locale', 'locale_name', 'day_type']
    for col in cols:
        processed_data[col] = encoder.fit_transform(processed_data[col])
    
    # Making Predictions
    def predict(X, model):
        results = model.predict(X)
        return results
    
    prediction = predict(X= processed_data, model= Loaded_object['model'])
    df['Sales']= prediction 
    
    
    # Displaying prediction results
    st.markdown('''---''')
    st.markdown("<h4 style='text-align: center;'> Prediction Results </h4> ", unsafe_allow_html=True)
    st.success(f"Predicted Sales: {prediction[-1]}")
    st.markdown('''---''')

    # Making expander to view all records
    expander = st.expander("See all records")
    with expander:
        df = pd.read_csv(tmp_df_file)
        df['Sales']= prediction
        st.dataframe(df)