Spaces:
Sleeping
Sleeping
File size: 8,712 Bytes
9ac0ba8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# Importing required Libraries
import streamlit as st
import pandas as pd
import numpy as np
import os, pickle
from sklearn.tree import DecisionTreeRegressor
from sklearn import preprocessing
# Setting up page configuration and directory path
st.set_page_config(page_title="Sales Forecasting App", page_icon="🐞", layout="centered")
DIRPATH = os.path.dirname(os.path.realpath(__file__))
# Setting background image
import base64
def add_bg_from_local(image_file):
with open(image_file, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read())
st.markdown(
f"""
<style>
.stApp {{
background-image: url(data:image/{"jpg"};base64,{encoded_string.decode()});
background-size: cover
}}
</style>
""",
unsafe_allow_html=True
)
add_bg_from_local('background.jpg')
# Setting up logo
left1, left2, mid,right1, right2 = st.columns(5)
with mid:
st.image("logo.jpg", use_column_width=True)
# Setting up Sidebar
social_acc = ['Data Field Description', 'EDA', 'About App']
social_acc_nav = st.sidebar.radio('**INFORMATION SECTION**', social_acc)
if social_acc_nav == 'Data Field Description':
st.sidebar.markdown("<h2 style='text-align: center;'> Data Field Description </h2> ", unsafe_allow_html=True)
st.sidebar.markdown("**Date:** The date you want to predict sales for")
st.sidebar.markdown("**Family:** identifies the type of product sold")
st.sidebar.markdown("**Onpromotion:** gives the total number of items in a product family that are being promoted at a store at a given date")
st.sidebar.markdown("**Store Number:** identifies the store at which the products are sold")
st.sidebar.markdown("**Holiday Locale:** provide information about the locale where holiday is celebrated")
elif social_acc_nav == 'EDA':
st.sidebar.markdown("<h2 style='text-align: center;'> Exploratory Data Analysis </h2> ", unsafe_allow_html=True)
st.sidebar.markdown('''---''')
st.sidebar.markdown('''The exploratory data analysis of this project can be find in a Jupyter notebook from the linl below''')
st.sidebar.markdown("[Open Notebook](https://github.com/Kyei-frank/Regression-Project-Store-Sales--Time-Series-Forecasting/blob/main/project_workflow.ipynb)")
elif social_acc_nav == 'About App':
st.sidebar.markdown("<h2 style='text-align: center;'> Sales Forecasting App </h2> ", unsafe_allow_html=True)
st.sidebar.markdown('''---''')
st.sidebar.markdown("This App predicts the sales for product families sold at Favorita stores using regression model.")
st.sidebar.markdown("")
st.sidebar.markdown("[ Visit Github Repository for more information](https://github.com/Kyei-frank/Regression-Project-Store-Sales--Time-Series-Forecasting)")
# Loading Machine Learning Objects
@st.cache()
def load_saved_objects(file_path = 'ML_items'):
# Function to load saved objects
with open('ML_items', 'rb') as file:
loaded_object = pickle.load(file)
return loaded_object
# Instantiating ML_items
Loaded_object = load_saved_objects(file_path = 'ML_items')
model, encoder, train_data, stores, holidays_event = Loaded_object['model'], Loaded_object['encoder'], Loaded_object['train_data'], Loaded_object['stores'], Loaded_object['holidays_event']
# Setting Function for extracting Calendar features
@st.cache()
def getDateFeatures(df, date):
df['date'] = pd.to_datetime(df['date'])
df['month'] = df.date.dt.month
df['day_of_month'] = df.date.dt.day
df['day_of_year'] = df.date.dt.dayofyear
df['week_of_year'] = df.date.dt.isocalendar().week
df['day_of_week'] = df.date.dt.dayofweek
df['year'] = df.date.dt.year
df['is_weekend']= np.where(df['day_of_week'] > 4, 1, 0)
df['is_month_start']= df.date.dt.is_month_start.astype(int)
df['is_month_end']= df.date.dt.is_month_end.astype(int)
df['quarter']= df.date.dt.quarter
df['is_quarter_start']= df.date.dt.is_quarter_start.astype(int)
df['is_quarter_end']= df.date.dt.is_quarter_end.astype(int)
df['is_year_start']= df.date.dt.is_year_start.astype(int)
return df
# Setting up variables for input data
@st.cache()
def setup(tmp_df_file):
"Setup the required elements like files, models, global variables, etc"
pd.DataFrame(
dict(
date=[],
store_nbr=[],
family=[],
onpromotion=[],
city=[],
state=[],
store_type=[],
cluster=[],
day_type=[],
locale=[],
locale_name=[],
)
).to_csv(tmp_df_file, index=False)
# Setting up a file to save our input data
tmp_df_file = os.path.join(DIRPATH, "tmp", "data.csv")
setup(tmp_df_file)
# setting Title for forms
st.markdown("<h2 style='text-align: center;'> Sales Prediction </h2> ", unsafe_allow_html=True)
st.markdown("<h7 style='text-align: center;'> Fill in the details below and click on SUBMIT button to make a prediction for a specific date and item </h7> ", unsafe_allow_html=True)
# Creating columns for for input data(forms)
left_col, mid_col, right_col = st.columns(3)
# Developing forms to collect input data
with st.form(key="information", clear_on_submit=True):
# Setting up input data for 1st column
left_col.markdown("**PRODUCT DATA**")
date = left_col.date_input("Prediction Date:")
family = left_col.selectbox("Item family:", options= list(train_data["family"].unique()))
onpromotion = left_col.selectbox("Onpromotion code:", options= set(train_data["onpromotion"].unique()))
store_nbr = left_col.selectbox("Store Number:", options= set(stores["store_nbr"].unique()))
# Setting up input data for 2nd column
mid_col.markdown("**STORE DATA**")
city = mid_col.selectbox("City:", options= set(stores["city"].unique()))
state = mid_col.selectbox("State:", options= list(stores["state"].unique()))
cluster = mid_col.selectbox("Store Cluster:", options= list(stores["cluster"].unique()))
store_type = mid_col.radio("Store Type:", options= set(stores["store_type"].unique()), horizontal = True)
# Setting up input data for 3rd column
right_col.markdown("**ADDITIONAL DATA**")
check= right_col.checkbox("Is it a Holiday or weekend?")
if check:
right_col.write('Fill the following information on Day Type')
day_type = right_col.selectbox("Holiday:", options= ('Holiday','Special Day:Transfered/Additional Holiday','No Work/Weekend'))
locale= right_col.selectbox("Holiday Locale:", options= list(holidays_event["locale"].unique()))
locale_name= right_col.selectbox("Locale Name:", options= list(holidays_event["locale_name"].unique()))
else:
day_type = 'Workday'
locale = 'National'
locale_name= 'Ecuador'
submitted = st.form_submit_button(label="Submit")
# Setting up background operations after submitting forms
if submitted:
# Saving input data as csv after submission
pd.read_csv(tmp_df_file).append(
dict(
date = date,
store_nbr = store_nbr,
family=family,
onpromotion= onpromotion,
city=city,
state=state,
store_type=store_type,
cluster=cluster,
day_type=day_type,
locale=locale,
locale_name=locale_name
),
ignore_index=True,
).to_csv(tmp_df_file, index=False)
st.balloons()
# Converting input data to a dataframe for prediction
df = pd.read_csv(tmp_df_file)
df= df.copy()
# Getting date Features
processed_data= getDateFeatures(df, 'date')
processed_data= processed_data.drop(columns=['date'])
# Encoding Categorical Variables
encoder = preprocessing.LabelEncoder()
cols = ['family', 'city', 'state', 'store_type', 'locale', 'locale_name', 'day_type']
for col in cols:
processed_data[col] = encoder.fit_transform(processed_data[col])
# Making Predictions
def predict(X, model):
results = model.predict(X)
return results
prediction = predict(X= processed_data, model= Loaded_object['model'])
df['Sales']= prediction
# Displaying prediction results
st.markdown('''---''')
st.markdown("<h4 style='text-align: center;'> Prediction Results </h4> ", unsafe_allow_html=True)
st.success(f"Predicted Sales: {prediction[-1]}")
st.markdown('''---''')
# Making expander to view all records
expander = st.expander("See all records")
with expander:
df = pd.read_csv(tmp_df_file)
df['Sales']= prediction
st.dataframe(df) |