Spaces:
Runtime error
Runtime error
File size: 1,457 Bytes
b7d40e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1SLY6vFgJGYJxXCiJWtRo3Qxag5r_Y4K7
"""
!pip install transformers
!pip install pytube
!pip install gradio
import os
import gradio as gr
from transformers import pipeline
from pytube import YouTube
#pipe = pipeline(model="jdowling/whisper-small-hi") # change to "your-username/the-name-you-picked" 加
def yt(link):
yt = YouTube(link)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
text = pipe("audio.mp3")["text"]
return text
def transcribe(audio):
text = pipe(audio)["text"]
return text
demo = gr.Blocks()
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text",
title="Whisper Small Swedish-Microphone",
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model. An audio for recognize.",
)
yt = gr.Interface(
fn=yt,
inputs=[gr.inputs.Textbox(lines=1, label="Youtube URL")],
outputs=["html", "text"],
title="Whisper Small Swedish-Youtube",
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model. A Youtube URL for recognize."
)
with demo:
gr.TabbedInterface([iface, yt], ["Transcribe Audio", "Transcribe YouTube"])
demo.launch(enable_queue=True) |