File size: 1,457 Bytes
b7d40e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# -*- coding: utf-8 -*-
"""app.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1SLY6vFgJGYJxXCiJWtRo3Qxag5r_Y4K7
"""

!pip install transformers
!pip install pytube

!pip install gradio

import os
import gradio as gr
from transformers import pipeline
from pytube import YouTube


#pipe = pipeline(model="jdowling/whisper-small-hi")  # change to "your-username/the-name-you-picked" 加


def yt(link):
    yt = YouTube(link)
    stream = yt.streams.filter(only_audio=True)[0]
    stream.download(filename="audio.mp3")
    text = pipe("audio.mp3")["text"]
    return text

def transcribe(audio):
    text = pipe(audio)["text"]
    return text

demo = gr.Blocks()


iface = gr.Interface(
    fn=transcribe, 
    inputs=gr.Audio(source="microphone", type="filepath"), 
    outputs="text",
    title="Whisper Small Swedish-Microphone",
    description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model. An audio for recognize.",
)

yt = gr.Interface(
    fn=yt,
    inputs=[gr.inputs.Textbox(lines=1, label="Youtube URL")],
    outputs=["html", "text"],
    title="Whisper Small Swedish-Youtube",
    description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model. A Youtube URL for recognize."

)

with demo:
    gr.TabbedInterface([iface, yt], ["Transcribe Audio", "Transcribe YouTube"])

demo.launch(enable_queue=True)