import gradio as gr import torch import numpy as np from PIL import Image from diffusers import StableDiffusionInstructPix2PixPipeline model_id = "timbrooks/instruct-pix2pix" device = "cuda" if torch.cuda.is_available() else "cpu" pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", safety_checker=None) if torch.cuda.is_available() else StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, safety_checker=None) pipe = pipe.to(device) def resize(value,img): img = Image.open(img) img = img.resize((value,value)) return img def infer(source_img, instructions, guide, steps, seed, Strength): generator = torch.Generator(device).manual_seed(seed) source_image = resize(512, source_img) source_image.save('source.png') image = pipe(instructions, image=source_image, guidance_scale=guide, image_guidance_scale=Strength, num_inference_steps=steps, generator=generator,).images[0] return image gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Slider(2, 15, value = 7.5, label = 'Guidance Scale'), gr.Slider(1, 20, value = 5, step = 1, label = 'Number of Iterations'), gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), gr.Slider(label='Strength', minimum = 1, maximum = 2, step = .25, value = 1.5)], outputs = 'image', title = "Instructions Picture to Picture", description = "Simply upload an image you want to edit, MUST Be .PNG and 512x512 or 768x768, then enter a Prompt telling the AI how to change the image, then click submit. This version runs on GPU or CPU and is currently running on the free CPU tier. 10 Iterations takes ~660 seconds currently. This version has no NSFW filter.", article = "Code Monkey: Manjushri").queue(max_size=5).launch(debug=True)