Spaces:
Running
on
T4
Running
on
T4
fixs
Browse files- tortoise/api.py +19 -20
tortoise/api.py
CHANGED
@@ -275,9 +275,7 @@ class TextToSpeech:
|
|
275 |
for vs in voice_samples:
|
276 |
auto_conds.append(format_conditioning(vs, device=self.device))
|
277 |
auto_conds = torch.stack(auto_conds, dim=1)
|
278 |
-
self.autoregressive = self.autoregressive.to(self.device)
|
279 |
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
280 |
-
self.autoregressive = self.autoregressive.cpu()
|
281 |
|
282 |
diffusion_conds = []
|
283 |
for sample in voice_samples:
|
@@ -288,9 +286,7 @@ class TextToSpeech:
|
|
288 |
diffusion_conds.append(cond_mel)
|
289 |
diffusion_conds = torch.stack(diffusion_conds, dim=1)
|
290 |
|
291 |
-
self.diffusion = self.diffusion.to(self.device)
|
292 |
diffusion_latent = self.diffusion.get_conditioning(diffusion_conds)
|
293 |
-
self.diffusion = self.diffusion.cpu()
|
294 |
|
295 |
if return_mels:
|
296 |
return auto_latent, diffusion_latent, auto_conds, diffusion_conds
|
@@ -405,22 +401,25 @@ class TextToSpeech:
|
|
405 |
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
|
406 |
if verbose:
|
407 |
print("Generating autoregressive samples..")
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
|
|
|
|
|
|
424 |
del auto_conditioning
|
425 |
|
426 |
if verbose:
|
|
|
275 |
for vs in voice_samples:
|
276 |
auto_conds.append(format_conditioning(vs, device=self.device))
|
277 |
auto_conds = torch.stack(auto_conds, dim=1)
|
|
|
278 |
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
|
|
279 |
|
280 |
diffusion_conds = []
|
281 |
for sample in voice_samples:
|
|
|
286 |
diffusion_conds.append(cond_mel)
|
287 |
diffusion_conds = torch.stack(diffusion_conds, dim=1)
|
288 |
|
|
|
289 |
diffusion_latent = self.diffusion.get_conditioning(diffusion_conds)
|
|
|
290 |
|
291 |
if return_mels:
|
292 |
return auto_latent, diffusion_latent, auto_conds, diffusion_conds
|
|
|
401 |
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
|
402 |
if verbose:
|
403 |
print("Generating autoregressive samples..")
|
404 |
+
with torch.autocast(
|
405 |
+
device_type="cuda" , dtype=torch.float16, enabled=self.half
|
406 |
+
):
|
407 |
+
codes = self.autoregressive.inference_speech(auto_conditioning, text_tokens,
|
408 |
+
do_sample=True,
|
409 |
+
top_p=top_p,
|
410 |
+
temperature=temperature,
|
411 |
+
num_return_sequences=num_autoregressive_samples,
|
412 |
+
length_penalty=length_penalty,
|
413 |
+
repetition_penalty=repetition_penalty,
|
414 |
+
max_generate_length=max_mel_tokens,
|
415 |
+
**hf_generate_kwargs)
|
416 |
+
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
417 |
+
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
418 |
+
# results, but will increase memory usage.
|
419 |
+
best_latents = self.autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1),
|
420 |
+
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
|
421 |
+
torch.tensor([codes.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device),
|
422 |
+
return_latent=True, clip_inputs=False)
|
423 |
del auto_conditioning
|
424 |
|
425 |
if verbose:
|