HindiTokenizer / src /base.py
Manu101's picture
Upload 12 files
693faa9 verified
import unicodedata
def get_stats(ids, counts=None):
"""
Given a list of ints/ids, count the pairwise occurence
Returns count dict
"""
counts = {} if counts is None else counts
for pair in zip(ids, ids[1:]):
counts[pair] = counts.get(pair, 0) + 1
return counts
def merge(ids, pair_to_merge, idx_to_use):
"""
find and merge the given `pair` and replace it with given `idx_to_use` in given list of ints/ids
Return updated list
"""
new_ids = []
i = 0
while i < len(ids):
# check pair match AND if 0th position is NOT last element
if i < len(ids) - 1 and (pair_to_merge[0] == ids[i] and pair_to_merge[1] == ids[i + 1]):
new_ids.append(idx_to_use) # pair found, append to new list of ids
i += 2 # skip by two elements as the pair is found
else:
# pair not found in the list, normal 1 element update
new_ids.append(ids[i]) # append the current item from old list as it is not a pair
i += 1
return new_ids
# helper functions taken directly from Karpathy's BPE repo
def replace_control_characters(s: str) -> str:
chars = []
for ch in s:
if unicodedata.category(ch)[0] != "C":
chars.append(ch) # this character is ok
else:
chars.append(f"\\u{ord(ch):04x}") # escape
return "".join(chars)
def render_token(t: bytes) -> str:
# pretty print a token, escaping control characters
s = t.decode('utf-8', errors='replace')
s = replace_control_characters(s)
return s
# base Tokenizer class
class Tokenizer:
"""Base Tokenizer class, MUST inherit for use"""
def __init__(self) -> None:
# defaults -> no patterns used, no merges, use usual first 256 bytes as mapping/vocab items
self.merges = {} # this will hold the actual merged data eg: (101, 32) -> 256 , here say 101 chr e and 32 ' '(space) had max pair count -> replace this with next ID in order
self.pattern = "" # any regular expression pattern if to be used on raw text
self.special_tokens = {} # a mapping t hold any special tokens, empty here, to be used for subclasses, str -> int, e.g. {'<|endoftext|>': 90257}
self.vocab = self._build_vocab() # int -> bytes
def train(self, text, vocab_size, verbose=False):
# Tokenizer can train a vocabulary of size vocab_size from text
raise NotImplementedError
def encode(self, text):
# Tokenizer can encode a string into a list of integers
raise NotImplementedError
def decode(self, ids):
# Tokenizer can decode a list of integers into a string
raise NotImplementedError
def _build_vocab(self):
# here vocab starts from normal 256 bytes of ints and then merges after it
vocab = {idx: bytes([idx]) for idx in range(256)}
for (pos0, pos1), idx in self.merges.items():
vocab[idx] = vocab[pos0] + vocab[pos1]
# NOW add special tokens defined in __init__()
# NOTE encode special tokens using .encode with UTF-8 encoding
for tok, idx in self.special_tokens.items():
vocab[idx] = tok.encode("utf-8")
# directly from BPE repo
def save(self, file_prefix):
"""
Saves two files: file_prefix.vocab and file_prefix.model
This is inspired (but not equivalent to!) sentencepiece's model saving:
- model file is the critical one, intended for load()
- vocab file is just a pretty printed version for human inspection only
"""
print("Saving tokenizer...")
# write the model: to be used in load() later
model_file = file_prefix + ".model"
with open(model_file, 'w') as f:
# write the version, pattern and merges, that's all that's needed
f.write("base v1\n")
f.write(f"{self.pattern}\n")
# write the special tokens, first the number of them, then each one
f.write(f"{len(self.special_tokens)}\n")
for special, idx in self.special_tokens.items():
f.write(f"{special} {idx}\n")
# the merges dict
for idx1, idx2 in self.merges:
f.write(f"{idx1} {idx2}\n")
# write the vocab: for the human to look at
vocab_file = file_prefix + ".vocab"
inverted_merges = {idx: pair for pair, idx in self.merges.items()}
with open(vocab_file, "w", encoding="utf-8") as f:
for idx, token in self.vocab.items():
# note: many tokens may be partial utf-8 sequences
# and cannot be decoded into valid strings. Here we're using
# errors='replace' to replace them with the replacement char �.
# this also means that we couldn't possibly use .vocab in load()
# because decoding in this way is a lossy operation!
s = render_token(token)
# find the children of this token, if any
if idx in inverted_merges:
# if this token has children, render it nicely as a merge
idx0, idx1 = inverted_merges[idx]
s0 = render_token(self.vocab[idx0])
s1 = render_token(self.vocab[idx1])
f.write(f"[{s0}][{s1}] -> [{s}] {idx}\n")
else:
# otherwise this is leaf token, just print it
# (this should just be the first 256 tokens, the bytes)
f.write(f"[{s}] {idx}\n")
def load(self, model_file):
"""Inverse of save() but only for the model file"""
assert model_file.endswith(".model")
# read the model file
merges = {}
special_tokens = {}
idx = 256
with open(model_file, 'r', encoding="utf-8") as f:
# read the version
version = f.readline().strip()
print(version)
# read the pattern
self.pattern = f.readline().strip()
# read the special tokens
num_special = int(f.readline().strip())
for _ in range(num_special):
special, special_idx = f.readline().strip().split()
special_tokens[special] = int(special_idx)
# read the merges
for line in f:
idx1, idx2 = map(int, line.split())
merges[(idx1, idx2)] = idx
idx += 1
self.merges = merges
self.special_tokens = special_tokens
self.vocab = self._build_vocab()