Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import warnings | |
from threading import Thread | |
import numpy as np | |
import torch | |
from PIL import Image | |
from tqdm import tqdm | |
def get_sdpa_settings(): | |
if torch.cuda.is_available(): | |
old_gpu = torch.cuda.get_device_properties(0).major < 7 | |
# only use Flash Attention on Ampere (8.0) or newer GPUs | |
use_flash_attn = torch.cuda.get_device_properties(0).major >= 8 | |
if not use_flash_attn: | |
warnings.warn( | |
"Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.", | |
category=UserWarning, | |
stacklevel=2, | |
) | |
# keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only | |
# available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases) | |
pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2]) | |
if pytorch_version < (2, 2): | |
warnings.warn( | |
f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. " | |
"Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).", | |
category=UserWarning, | |
stacklevel=2, | |
) | |
math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn | |
else: | |
old_gpu = True | |
use_flash_attn = False | |
math_kernel_on = True | |
return old_gpu, use_flash_attn, math_kernel_on | |
def get_connected_components(mask): | |
""" | |
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W). | |
Inputs: | |
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is | |
background. | |
Outputs: | |
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels | |
for foreground pixels and 0 for background pixels. | |
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected | |
components for foreground pixels and 0 for background pixels. | |
""" | |
from sam2 import _C | |
return _C.get_connected_componnets(mask.to(torch.uint8).contiguous()) | |
def mask_to_box(masks: torch.Tensor): | |
""" | |
compute bounding box given an input mask | |
Inputs: | |
- masks: [B, 1, H, W] masks, dtype=torch.Tensor | |
Returns: | |
- box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor | |
""" | |
B, _, h, w = masks.shape | |
device = masks.device | |
xs = torch.arange(w, device=device, dtype=torch.int32) | |
ys = torch.arange(h, device=device, dtype=torch.int32) | |
grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy") | |
grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w) | |
grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w) | |
min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1) | |
max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1) | |
min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1) | |
max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1) | |
bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1) | |
return bbox_coords | |
def _load_img_as_tensor(img_path, image_size): | |
img_pil = Image.open(img_path) | |
img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size))) | |
if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images | |
img_np = img_np / 255.0 | |
else: | |
raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}") | |
img = torch.from_numpy(img_np).permute(2, 0, 1) | |
video_width, video_height = img_pil.size # the original video size | |
return img, video_height, video_width | |
class AsyncVideoFrameLoader: | |
""" | |
A list of video frames to be load asynchronously without blocking session start. | |
""" | |
def __init__( | |
self, | |
img_paths, | |
image_size, | |
offload_video_to_cpu, | |
img_mean, | |
img_std, | |
compute_device, | |
): | |
self.img_paths = img_paths | |
self.image_size = image_size | |
self.offload_video_to_cpu = offload_video_to_cpu | |
self.img_mean = img_mean | |
self.img_std = img_std | |
# items in `self.images` will be loaded asynchronously | |
self.images = [None] * len(img_paths) | |
# catch and raise any exceptions in the async loading thread | |
self.exception = None | |
# video_height and video_width be filled when loading the first image | |
self.video_height = None | |
self.video_width = None | |
self.compute_device = compute_device | |
# load the first frame to fill video_height and video_width and also | |
# to cache it (since it's most likely where the user will click) | |
self.__getitem__(0) | |
# load the rest of frames asynchronously without blocking the session start | |
def _load_frames(): | |
try: | |
for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"): | |
self.__getitem__(n) | |
except Exception as e: | |
self.exception = e | |
self.thread = Thread(target=_load_frames, daemon=True) | |
self.thread.start() | |
def __getitem__(self, index): | |
if self.exception is not None: | |
raise RuntimeError("Failure in frame loading thread") from self.exception | |
img = self.images[index] | |
if img is not None: | |
return img | |
img, video_height, video_width = _load_img_as_tensor( | |
self.img_paths[index], self.image_size | |
) | |
self.video_height = video_height | |
self.video_width = video_width | |
# normalize by mean and std | |
img -= self.img_mean | |
img /= self.img_std | |
if not self.offload_video_to_cpu: | |
img = img.to(self.compute_device, non_blocking=True) | |
self.images[index] = img | |
return img | |
def __len__(self): | |
return len(self.images) | |
def load_video_frames( | |
video_path, | |
image_size, | |
offload_video_to_cpu, | |
img_mean=(0.485, 0.456, 0.406), | |
img_std=(0.229, 0.224, 0.225), | |
async_loading_frames=False, | |
compute_device=torch.device("cuda"), | |
): | |
""" | |
Load the video frames from video_path. The frames are resized to image_size as in | |
the model and are loaded to GPU if offload_video_to_cpu=False. This is used by the demo. | |
""" | |
is_bytes = isinstance(video_path, bytes) | |
is_str = isinstance(video_path, str) | |
is_mp4_path = is_str and os.path.splitext(video_path)[-1] in [".mp4", ".MP4"] | |
if is_bytes or is_mp4_path: | |
return load_video_frames_from_video_file( | |
video_path=video_path, | |
image_size=image_size, | |
offload_video_to_cpu=offload_video_to_cpu, | |
img_mean=img_mean, | |
img_std=img_std, | |
compute_device=compute_device, | |
) | |
elif is_str and os.path.isdir(video_path): | |
return load_video_frames_from_jpg_images( | |
video_path=video_path, | |
image_size=image_size, | |
offload_video_to_cpu=offload_video_to_cpu, | |
img_mean=img_mean, | |
img_std=img_std, | |
async_loading_frames=async_loading_frames, | |
compute_device=compute_device, | |
) | |
else: | |
raise NotImplementedError( | |
"Only MP4 video and JPEG folder are supported at this moment" | |
) | |
def load_video_frames_from_jpg_images( | |
video_path, | |
image_size, | |
offload_video_to_cpu, | |
img_mean=(0.485, 0.456, 0.406), | |
img_std=(0.229, 0.224, 0.225), | |
async_loading_frames=False, | |
compute_device=torch.device("cuda"), | |
): | |
""" | |
Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format). | |
The frames are resized to image_size x image_size and are loaded to GPU if | |
`offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`. | |
You can load a frame asynchronously by setting `async_loading_frames` to `True`. | |
""" | |
if isinstance(video_path, str) and os.path.isdir(video_path): | |
jpg_folder = video_path | |
else: | |
raise NotImplementedError( | |
"Only JPEG frames are supported at this moment. For video files, you may use " | |
"ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n" | |
"```\n" | |
"ffmpeg -i <your_video>.mp4 -q:v 2 -start_number 0 <output_dir>/'%05d.jpg'\n" | |
"```\n" | |
"where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks " | |
"ffmpeg to start the JPEG file from 00000.jpg." | |
) | |
frame_names = [ | |
p | |
for p in os.listdir(jpg_folder) | |
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] | |
] | |
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0].split('frame_')[-1])) | |
# frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) | |
num_frames = len(frame_names) | |
if num_frames == 0: | |
raise RuntimeError(f"no images found in {jpg_folder}") | |
img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names] | |
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] | |
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] | |
if async_loading_frames: | |
lazy_images = AsyncVideoFrameLoader( | |
img_paths, | |
image_size, | |
offload_video_to_cpu, | |
img_mean, | |
img_std, | |
compute_device, | |
) | |
return lazy_images, lazy_images.video_height, lazy_images.video_width | |
images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32) | |
for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")): | |
images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size) | |
if not offload_video_to_cpu: | |
images = images.to(compute_device) | |
img_mean = img_mean.to(compute_device) | |
img_std = img_std.to(compute_device) | |
# normalize by mean and std | |
images -= img_mean | |
images /= img_std | |
return images, video_height, video_width | |
def load_video_frames_from_video_file( | |
video_path, | |
image_size, | |
offload_video_to_cpu, | |
img_mean=(0.485, 0.456, 0.406), | |
img_std=(0.229, 0.224, 0.225), | |
compute_device=torch.device("cuda"), | |
): | |
"""Load the video frames from a video file.""" | |
import decord | |
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] | |
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] | |
# Get the original video height and width | |
decord.bridge.set_bridge("torch") | |
video_height, video_width, _ = decord.VideoReader(video_path).next().shape | |
# Iterate over all frames in the video | |
images = [] | |
for frame in decord.VideoReader(video_path, width=image_size, height=image_size): | |
images.append(frame.permute(2, 0, 1)) | |
images = torch.stack(images, dim=0).float() / 255.0 | |
if not offload_video_to_cpu: | |
images = images.to(compute_device) | |
img_mean = img_mean.to(compute_device) | |
img_std = img_std.to(compute_device) | |
# normalize by mean and std | |
images -= img_mean | |
images /= img_std | |
return images, video_height, video_width | |
def fill_holes_in_mask_scores(mask, max_area): | |
""" | |
A post processor to fill small holes in mask scores with area under `max_area`. | |
""" | |
# Holes are those connected components in background with area <= self.max_area | |
# (background regions are those with mask scores <= 0) | |
assert max_area > 0, "max_area must be positive" | |
input_mask = mask | |
try: | |
labels, areas = get_connected_components(mask <= 0) | |
is_hole = (labels > 0) & (areas <= max_area) | |
# We fill holes with a small positive mask score (0.1) to change them to foreground. | |
mask = torch.where(is_hole, 0.1, mask) | |
except Exception as e: | |
# Skip the post-processing step on removing small holes if the CUDA kernel fails | |
warnings.warn( | |
f"{e}\n\nSkipping the post-processing step due to the error above. You can " | |
"still use SAM 2 and it's OK to ignore the error above, although some post-processing " | |
"functionality may be limited (which doesn't affect the results in most cases; see " | |
"https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).", | |
category=UserWarning, | |
stacklevel=2, | |
) | |
mask = input_mask | |
return mask | |
def concat_points(old_point_inputs, new_points, new_labels): | |
"""Add new points and labels to previous point inputs (add at the end).""" | |
if old_point_inputs is None: | |
points, labels = new_points, new_labels | |
else: | |
points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1) | |
labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1) | |
return {"point_coords": points, "point_labels": labels} | |