MarieAngeA13 commited on
Commit
06bd1d2
·
1 Parent(s): 20bbaa8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -2
app.py CHANGED
@@ -1,6 +1,8 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
 
 
4
 
5
  # Load the sentiment analysis model from our BERT model
6
  classifier = pipeline("text-classification", model = "MarieAngeA13/Sentiment-Analysis-BERT")
@@ -10,12 +12,24 @@ st.title('Sentiment Analysis with BERT')
10
  st.write('Enter some text and we will predict its sentiment!')
11
 
12
  # Add a text input box for the user to enter text
 
13
  text_input = st.text_input('Enter text here')
14
 
 
 
 
 
 
 
 
 
 
 
 
15
  # When the user submits text, run the sentiment analysis model on it
16
  if st.button('Submit'):
17
  # Predict the sentiment of the text using our own BERT model
18
- output = classifier(text_input)
19
 
20
  best_prediction = output[0]
21
  sentiment = best_prediction['label']
@@ -24,4 +38,4 @@ if st.button('Submit'):
24
  # Display the sentiment prediction to the user
25
  st.write(f'Sentiment: {sentiment}')
26
  st.write(f'Confidence: {round(confidence, 2)}')
27
-
 
1
  import streamlit as st
2
  from transformers import pipeline
3
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
4
+ pip install googletrans==4.0.0rc1
5
+ from googletrans import Translator
6
 
7
  # Load the sentiment analysis model from our BERT model
8
  classifier = pipeline("text-classification", model = "MarieAngeA13/Sentiment-Analysis-BERT")
 
12
  st.write('Enter some text and we will predict its sentiment!')
13
 
14
  # Add a text input box for the user to enter text
15
+ translator = Translator()
16
  text_input = st.text_input('Enter text here')
17
 
18
+ detected_language = translator.detect(text_input).lang
19
+
20
+ if detected_language == 'fr':
21
+ translation = translator.translate(text_input, src='fr', dest='en')
22
+ translated_text = translation.text
23
+ else:
24
+ translated_text = text_input
25
+ print(translated_text)
26
+
27
+
28
+
29
  # When the user submits text, run the sentiment analysis model on it
30
  if st.button('Submit'):
31
  # Predict the sentiment of the text using our own BERT model
32
+ output = classifier(translated_text)
33
 
34
  best_prediction = output[0]
35
  sentiment = best_prediction['label']
 
38
  # Display the sentiment prediction to the user
39
  st.write(f'Sentiment: {sentiment}')
40
  st.write(f'Confidence: {round(confidence, 2)}')
41
+