MarieAngeA13 commited on
Commit
5648f24
·
1 Parent(s): 0c23360

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -1,11 +1,12 @@
1
  import streamlit as st
2
  from transformers import pipeline
 
3
 
4
- # Load the sentiment analysis model from Hugging Face
5
- classifier = pipeline('sentiment-analysis')
6
 
7
  # Create a Streamlit app
8
- st.title('Sentiment Analysis with Hugging Face')
9
  st.write('Enter some text and we will predict its sentiment!')
10
 
11
  # Add a text input box for the user to enter text
@@ -13,8 +14,11 @@ text_input = st.text_input('Enter text here')
13
 
14
  # When the user submits text, run the sentiment analysis model on it
15
  if st.button('Submit'):
16
- # Predict the sentiment of the text using the Hugging Face model
17
- sentiment = classifier(text_input)[0]['label']
 
 
18
 
19
  # Display the sentiment prediction to the user
20
- st.write(f'Sentiment: {sentiment}')
 
 
1
  import streamlit as st
2
  from transformers import pipeline
3
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
4
 
5
+ # Load the sentiment analysis model from our BERT model
6
+ classifier = pipeline("text-classification", model = "MarieAngeA13/Sentiment-Analysis-BERT")
7
 
8
  # Create a Streamlit app
9
+ st.title('Sentiment Analysis with BERT')
10
  st.write('Enter some text and we will predict its sentiment!')
11
 
12
  # Add a text input box for the user to enter text
 
14
 
15
  # When the user submits text, run the sentiment analysis model on it
16
  if st.button('Submit'):
17
+ # Predict the sentiment of the text using our own BERT model
18
+ output = classifier(text_input)
19
+
20
+ best_prediction = output[0]
21
 
22
  # Display the sentiment prediction to the user
23
+ st.write(f'Sentiment: {best_prediction['label']}')
24
+ st.write(f'Confidence: {best_prediction['score']}')