import cv2
import math
import numpy as np
import os
import os.path as osp
import random
import time
import torch
from torch.utils import data as data

from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.data.transforms import augment
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY


@DATASET_REGISTRY.register(suffix='basicsr')
class RealESRGANDataset(data.Dataset):
    """Dataset used for Real-ESRGAN model:
    Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.

    It loads gt (Ground-Truth) images, and augments them.
    It also generates blur kernels and sinc kernels for generating low-quality images.
    Note that the low-quality images are processed in tensors on GPUS for faster processing.

    Args:
        opt (dict): Config for train datasets. It contains the following keys:
            dataroot_gt (str): Data root path for gt.
            meta_info (str): Path for meta information file.
            io_backend (dict): IO backend type and other kwarg.
            use_hflip (bool): Use horizontal flips.
            use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
            Please see more options in the codes.
    """

    def __init__(self, opt):
        super(RealESRGANDataset, self).__init__()
        self.opt = opt
        self.file_client = None
        self.io_backend_opt = opt['io_backend']
        self.gt_folder = opt['dataroot_gt']

        # file client (lmdb io backend)
        if self.io_backend_opt['type'] == 'lmdb':
            self.io_backend_opt['db_paths'] = [self.gt_folder]
            self.io_backend_opt['client_keys'] = ['gt']
            if not self.gt_folder.endswith('.lmdb'):
                raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
            with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
                self.paths = [line.split('.')[0] for line in fin]
        else:
            # disk backend with meta_info
            # Each line in the meta_info describes the relative path to an image
            with open(self.opt['meta_info']) as fin:
                paths = [line.strip().split(' ')[0] for line in fin]
                self.paths = [os.path.join(self.gt_folder, v) for v in paths]

        # blur settings for the first degradation
        self.blur_kernel_size = opt['blur_kernel_size']
        self.kernel_list = opt['kernel_list']
        self.kernel_prob = opt['kernel_prob']  # a list for each kernel probability
        self.blur_sigma = opt['blur_sigma']
        self.betag_range = opt['betag_range']  # betag used in generalized Gaussian blur kernels
        self.betap_range = opt['betap_range']  # betap used in plateau blur kernels
        self.sinc_prob = opt['sinc_prob']  # the probability for sinc filters

        # blur settings for the second degradation
        self.blur_kernel_size2 = opt['blur_kernel_size2']
        self.kernel_list2 = opt['kernel_list2']
        self.kernel_prob2 = opt['kernel_prob2']
        self.blur_sigma2 = opt['blur_sigma2']
        self.betag_range2 = opt['betag_range2']
        self.betap_range2 = opt['betap_range2']
        self.sinc_prob2 = opt['sinc_prob2']

        # a final sinc filter
        self.final_sinc_prob = opt['final_sinc_prob']

        self.kernel_range = [2 * v + 1 for v in range(3, 11)]  # kernel size ranges from 7 to 21
        # TODO: kernel range is now hard-coded, should be in the configure file
        self.pulse_tensor = torch.zeros(21, 21).float()  # convolving with pulse tensor brings no blurry effect
        self.pulse_tensor[10, 10] = 1

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)

        # -------------------------------- Load gt images -------------------------------- #
        # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
        gt_path = self.paths[index]
        # avoid errors caused by high latency in reading files
        retry = 3
        while retry > 0:
            try:
                img_bytes = self.file_client.get(gt_path, 'gt')
            except (IOError, OSError) as e:
                logger = get_root_logger()
                logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}')
                # change another file to read
                index = random.randint(0, self.__len__())
                gt_path = self.paths[index]
                time.sleep(1)  # sleep 1s for occasional server congestion
            else:
                break
            finally:
                retry -= 1
        img_gt = imfrombytes(img_bytes, float32=True)

        # -------------------- Do augmentation for training: flip, rotation -------------------- #
        img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot'])

        # crop or pad to 400
        # TODO: 400 is hard-coded. You may change it accordingly
        h, w = img_gt.shape[0:2]
        crop_pad_size = 400
        # pad
        if h < crop_pad_size or w < crop_pad_size:
            pad_h = max(0, crop_pad_size - h)
            pad_w = max(0, crop_pad_size - w)
            img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
        # crop
        if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size:
            h, w = img_gt.shape[0:2]
            # randomly choose top and left coordinates
            top = random.randint(0, h - crop_pad_size)
            left = random.randint(0, w - crop_pad_size)
            img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...]

        # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.opt['sinc_prob']:
            # this sinc filter setting is for kernels ranging from [7, 21]
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel = random_mixed_kernels(
                self.kernel_list,
                self.kernel_prob,
                kernel_size,
                self.blur_sigma,
                self.blur_sigma, [-math.pi, math.pi],
                self.betag_range,
                self.betap_range,
                noise_range=None)
        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.opt['sinc_prob2']:
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel2 = random_mixed_kernels(
                self.kernel_list2,
                self.kernel_prob2,
                kernel_size,
                self.blur_sigma2,
                self.blur_sigma2, [-math.pi, math.pi],
                self.betag_range2,
                self.betap_range2,
                noise_range=None)

        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------------------- the final sinc kernel ------------------------------------- #
        if np.random.uniform() < self.opt['final_sinc_prob']:
            kernel_size = random.choice(self.kernel_range)
            omega_c = np.random.uniform(np.pi / 3, np.pi)
            sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
            sinc_kernel = torch.FloatTensor(sinc_kernel)
        else:
            sinc_kernel = self.pulse_tensor

        # BGR to RGB, HWC to CHW, numpy to tensor
        img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
        kernel = torch.FloatTensor(kernel)
        kernel2 = torch.FloatTensor(kernel2)

        return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path}
        return return_d

    def __len__(self):
        return len(self.paths)