Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import marqo | |
import requests | |
import io | |
from PIL import Image | |
import gradio as gr | |
import os | |
from dotenv import load_dotenv | |
load_dotenv() | |
# Initialize Marqo client (for local deployment) | |
# mq = marqo.Client("http://localhost:8882", api_key=None) | |
# Initialize Marqo client (for Marqo Cloud deployment) | |
api_key = os.getenv("MARQO_API_KEY") | |
mq = marqo.Client("https://api.marqo.ai", api_key=api_key) | |
def search_marqo(query, themes, negatives): | |
# Build query weights | |
query_weights = {query: 1.0} | |
if themes: | |
query_weights[themes] = 0.75 | |
if negatives: | |
query_weights[negatives] = -1.1 | |
# Perform search with Marqo | |
res = mq.index("marqo-ecommerce-b").search(query_weights, limit=10) # limit to top 10 results | |
# Prepare results | |
products = [] | |
for hit in res['hits']: | |
image_url = hit.get('image_url') | |
title = hit.get('title', 'No Title') | |
description = hit.get('description', 'No Description') | |
price = hit.get('price', 'N/A') | |
score = hit['_score'] | |
# Fetch the image from the URL | |
response = requests.get(image_url) | |
image = Image.open(io.BytesIO(response.content)) | |
# Append product details for Gradio display | |
product_info = f'{title}\n{description}\nPrice: {price}\nScore: {score:.4f}' | |
products.append((image, product_info)) | |
return products | |
# Function to clear inputs and results | |
def clear_inputs(): | |
return "", "", [], [] | |
# Gradio Blocks Interface for Custom Layout | |
with gr.Blocks(css=".orange-button { background-color: orange; color: black; }") as interface: | |
gr.Markdown("<h1 style='text-align: center;'>Multimodal Ecommerce Search with Marqo's SOTA Embedding Models</h1>") | |
gr.Markdown("### This ecommerce search demo uses:") | |
gr.Markdown("### 1. [Marqo Cloud](https://www.marqo.ai/cloud) for the Search Engine.") | |
gr.Markdown("### 2. [Marqo-Ecommerce-Embeddings](https://huggingface.co/collections/Marqo/marqo-ecommerce-embeddings-66f611b9bb9d035a8d164fbb) for the multimodal embedding model.") | |
gr.Markdown("### 3. 100k products from the [Marqo-GS-10M](https://huggingface.co/datasets/Marqo/marqo-GS-10M) dataset.") | |
gr.Markdown("") | |
with gr.Row(): | |
query_input = gr.Textbox(placeholder="Coffee machine", label="Search Query") | |
themes_input = gr.Textbox(placeholder="Silver", label="More of...") | |
negatives_input = gr.Textbox(placeholder="Buttons", label="Less of...") | |
with gr.Row(): | |
search_button = gr.Button("Submit", elem_classes="orange-button") | |
results_gallery = gr.Gallery(label="Top 10 Results", columns=4) | |
search_button.click(fn=search_marqo, inputs=[query_input, themes_input, negatives_input], outputs=results_gallery) | |
query_input.submit(fn=search_marqo, inputs=[query_input, themes_input, negatives_input], outputs=results_gallery) | |
themes_input.submit(fn=search_marqo, inputs=[query_input, themes_input, negatives_input], outputs=results_gallery) | |
negatives_input.submit(fn=search_marqo, inputs=[query_input, themes_input, negatives_input], outputs=results_gallery) | |
interface.launch() | |