import torch from diffusers import ShapEPipeline from diffusers.utils import export_to_gif import PIL.Image def generate_3d_model(prompt, output_path="assistant_3d.gif"): """ Generate a 3D model using ShapE optimized for CPU usage """ try: # Force CPU and reduced precision pipe = ShapEPipeline.from_pretrained( "openai/shap-e", torch_dtype=torch.float32, low_cpu_mem_usage=True ).to("cpu") # Minimal generation settings to reduce memory usage outputs = pipe( prompt, num_inference_steps=32, # Reduced from default frame_size=32, # Smaller frame size guidance_scale=10.0, # Reduced guidance scale num_frames=30 # Reduced number of frames ) # Ensure we have PIL images if not isinstance(outputs.images[0], PIL.Image.Image): images = [PIL.Image.fromarray(img) for img in outputs.images] else: images = outputs.images # Save as GIF gif_path = export_to_gif(images, output_path) print(f"Successfully created GIF at: {gif_path}") return gif_path except Exception as e: print(f"Error during generation: {e}") print(f"Error type: {type(e)}") print(f"Full error details: {str(e)}") raise if __name__ == "__main__": prompt = "A gentle AI voice assistant constructed from a circle ring and 3 lines that fly alongside the circle" # Simplified prompt try: generate_3d_model(prompt) except Exception as e: print(f"Generation failed: {e}")