File size: 9,093 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#include "speculative.h"

#include "log.h"
#include "common.h"
#include "sampling.h"

#include <cstring>

#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE  128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5

struct common_speculative {
    struct llama_context * ctx;
    struct common_sampler * smpl;

    llama_batch batch;
    llama_tokens prompt;
};

struct common_speculative * common_speculative_init(
        struct llama_context * ctx_dft) {
    auto * result = new common_speculative {
        /* .ctx    = */ ctx_dft,
        /* .smpl   = */ nullptr,
        /* .batch  = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
        /* .prompt = */ {},
    };

    // TODO: optimize or pass from outside?
#if 0
    {
        common_params_sampling params;
        params.no_perf = false;

        params.top_k = 40;
        params.top_p = 0.9;

        params.samplers = {
            COMMON_SAMPLER_TYPE_TOP_K,
            COMMON_SAMPLER_TYPE_TOP_P,
            COMMON_SAMPLER_TYPE_INFILL,
        };

        result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
    }
#else
    {
        common_params_sampling params;
        params.no_perf = false;

        params.top_k = 10;

        params.samplers = {
            COMMON_SAMPLER_TYPE_TOP_K,
        };

        result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
    }
#endif

    return result;
}

void common_speculative_free(struct common_speculative * spec) {
    common_sampler_free(spec->smpl);

    llama_batch_free(spec->batch);

    delete spec;
}

bool common_speculative_are_compatible(
        const struct llama_context * ctx_tgt,
        const struct llama_context * ctx_dft) {
    const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
    const struct llama_model * model_dft = llama_get_model(ctx_dft);

    const bool vocab_type_tgt = llama_vocab_type(model_tgt);
    LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);

    const bool vocab_type_dft = llama_vocab_type(model_dft);
    LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);

    if (vocab_type_tgt != vocab_type_dft) {
        LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
                     "vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
        return false;
    }

    if (llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
        llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
        llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
        llama_token_eos(model_tgt) != llama_token_eos(model_dft)) {
        LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
        LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_tgt), llama_add_bos_token(model_tgt), llama_token_eos(model_tgt), llama_add_eos_token(model_tgt));
        LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_dft), llama_add_bos_token(model_dft), llama_token_eos(model_dft), llama_add_eos_token(model_dft));
        return false;
    }

    {
        const int n_vocab_tgt = llama_n_vocab(model_tgt);
        const int n_vocab_dft = llama_n_vocab(model_dft);

        const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);

        if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
            LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
                         "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
                    __func__, n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
            return false;
        }

        for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
            const char * token_text_tgt = llama_token_get_text(model_tgt, i);
            const char * token_text_dft = llama_token_get_text(model_dft, i);
            if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
                LOG_ERR("%s: draft model vocab must match target model to use speculation but "
                             "token %d content differs - target '%s', draft '%s'\n", __func__, i,
                        common_token_to_piece(ctx_tgt, i).c_str(),
                        common_token_to_piece(ctx_dft, i).c_str());
                return false;
            }
        }
    }

    return true;
}

llama_tokens common_speculative_gen_draft(
        struct common_speculative * spec,
        struct common_speculative_params params,
        const llama_tokens & prompt_tgt,
        llama_token id_last) {
    auto & batch  = spec->batch;
    auto & ctx    = spec->ctx;
    auto & smpl   = spec->smpl;
    auto & prompt = spec->prompt;

    int reuse_i = 0;
    int reuse_n = 0;

    const int n_ctx = llama_n_ctx(ctx) - params.n_draft;

    const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);

    // reuse as much as possible from the old draft context
    // ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
    for (int i = 0; i < (int) prompt.size(); ++i) {
        int cur = 0;
        while (i_start + cur < (int) prompt_tgt.size() &&
               i       + cur < (int) prompt.size() &&
               prompt_tgt[i_start + cur] == prompt[i + cur]) {
            cur++;
        }

        if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) {
            reuse_i = i;
            reuse_n = cur;
        }
    }

    LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());

    llama_tokens result;
    result.reserve(params.n_draft);

    if (reuse_n == 0) {
        llama_kv_cache_clear(ctx);

        prompt.clear();
    } else {
        // this happens when a previous draft has been discarded (for example, due to being too small), but the
        // target model agreed with it. in this case, we simply pass back the previous results to save compute
        if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
            for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
                result.push_back(prompt[i]);

                if (params.n_draft <= (int) result.size()) {
                    break;
                }
            }

            return result;
        }

        if (reuse_i > 0) {
            llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
            llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);

            prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
        }

        if (reuse_n < (int) prompt.size()) {
            llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);

            prompt.erase(prompt.begin() + reuse_n, prompt.end());
        }
    }

    // prepare a batch to evaluate any new tokens in the prompt
    common_batch_clear(batch);

    for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
        //LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
        common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);

        prompt.push_back(prompt_tgt[i]);
    }

    // we should rarely end-up here during normal decoding
    if (batch.n_tokens > 0) {
        //LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());

        llama_decode(ctx, batch);
    }

    const llama_pos n_past = prompt.size();

    LOG_DBG("%s: n_past = %d\n", __func__, n_past);

    common_batch_clear(batch);
    common_batch_add  (batch, id_last, n_past, { 0 }, true);

    prompt.push_back(id_last);

    //LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());

    llama_decode(ctx, batch);

    common_sampler_reset(smpl);

    // sample n_draft tokens from the draft model
    for (int i = 0; i < params.n_draft; ++i) {
        common_batch_clear(batch);

        common_sampler_sample(smpl, ctx, 0, true);

        const auto * cur_p = common_sampler_get_candidates(smpl);

        for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
            LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
                    k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
        }

        // add drafted token for each sequence
        const llama_token id = cur_p->data[0].id;

        // only collect very high-confidence draft tokens
        if (cur_p->data[0].p < params.p_min) {
            break;
        }

        common_sampler_accept(smpl, id, true);

        result.push_back(id);

        if (params.n_draft <= (int) result.size()) {
            break;
        }

        common_batch_add(batch, id, n_past + i + 1, { 0 }, true);

        // evaluate the drafted tokens on the draft model
        llama_decode(ctx, batch);

        prompt.push_back(id);
    }

    return result;
}