File size: 60,996 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
#!/usr/bin/env python3
from __future__ import annotations

import logging
import argparse
import concurrent.futures
import enum
import faulthandler
import functools
import itertools
import json
import math
import mmap
import os
import pickle
import re
import signal
import struct
import sys
import textwrap
import time
import zipfile
from abc import ABC, abstractmethod
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar

import numpy as np

if 'NO_LOCAL_GGUF' not in os.environ:
    # use .parent.parent since we are in "examples" directory
    sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py'))

import gguf
from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab

if TYPE_CHECKING:
    from typing_extensions import Self, TypeAlias

logger = logging.getLogger("convert")

if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
    faulthandler.register(signal.SIGUSR1)

NDArray: TypeAlias = 'np.ndarray[Any, Any]'

ARCH = gguf.MODEL_ARCH.LLAMA

DEFAULT_CONCURRENCY = 8

ADDED_TOKENS_FILE = 'added_tokens.json'
FAST_TOKENIZER_FILE = 'tokenizer.json'

#
# data types
#


@dataclass(frozen=True)
class DataType:
    name: str
    dtype: np.dtype[Any]
    valid_conversions: list[str]

    def elements_to_bytes(self, n_elements: int) -> int:
        return n_elements * self.dtype.itemsize


@dataclass(frozen=True)
class UnquantizedDataType(DataType):
    pass


DT_F16  = UnquantizedDataType('F16',  dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
DT_F32  = UnquantizedDataType('F32',  dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
DT_I32  = UnquantizedDataType('I32',  dtype = np.dtype(np.int16),   valid_conversions = [])
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16),  valid_conversions = ['F32', 'F16', 'Q8_0'])


@dataclass(frozen=True)
class QuantizedDataType(DataType):
    block_size: int
    quantized_dtype: np.dtype[Any]
    ggml_type: gguf.GGMLQuantizationType

    def quantize(self, arr: NDArray) -> NDArray:
        raise NotImplementedError(f'Quantization for {self.name} not implemented')

    def elements_to_bytes(self, n_elements: int) -> int:
        assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
        return self.quantized_dtype.itemsize * (n_elements // self.block_size)


@dataclass(frozen=True)
class Q8_0QuantizedDataType(QuantizedDataType):
    # Mini Q8_0 quantization in Python!
    def quantize(self, arr: NDArray) -> NDArray:
        assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
        assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
        n_blocks = arr.size // self.block_size
        blocks = arr.reshape((n_blocks, self.block_size))
        # Much faster implementation of block quantization contributed by @Cebtenzzre

        def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
            d = abs(blocks).max(axis = 1) / np.float32(127)
            with np.errstate(divide = 'ignore'):
                qs = (blocks / d[:, None]).round()
            qs[d == 0] = 0
            yield from zip(d, qs)
        return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)


DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
                                dtype = np.dtype(np.float32), valid_conversions = [],
                                ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
                                quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))

# Quantized types skipped here because they may also map to np.float32
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
    if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
        raise ValueError(f'Invalid duplicate data type {dt}')
    NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt

SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
    'BF16': DT_BF16,
    'F16': DT_F16,
    'F32': DT_F32,
    'I32': DT_I32,
}

# TODO: match this with `llama_ftype`
# TODO: rename to LLAMAFileType
# TODO: move to `gguf.py`


class GGMLFileType(enum.IntEnum):
    AllF32     = 0
    MostlyF16  = 1  # except 1d tensors
    MostlyQ8_0 = 7  # except 1d tensors

    def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
        dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
        if dt is None:
            raise ValueError(self)
        # Convert all 1D tensors to F32.  Most of the codebase that takes in 1D tensors only handles F32 tensors, and most of the outputs tensors are F32.
        #  Also The 1d tensors aren't much of a performance/size issue.  So instead of having to have separate F32 and F16 implementations of both, just convert everything to F32 for now.
        return dt if len(tensor.shape) > 1 else DT_F32


GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
    GGMLFileType.AllF32    : DT_F32,
    GGMLFileType.MostlyF16 : DT_F16,
    GGMLFileType.MostlyQ8_0: DT_Q8_0,
}

#
# hparams loading
#


@dataclass
class Params:
    n_vocab:        int
    n_embd:         int
    n_layer:        int
    n_ctx:          int
    n_ff:           int
    n_head:         int
    n_head_kv:      int
    n_experts:      int | None = None
    n_experts_used: int | None = None
    f_norm_eps:     float | None = None

    rope_scaling_type: gguf.RopeScalingType | None = None
    f_rope_freq_base: float | None = None
    f_rope_scale: float | None = None
    n_ctx_orig: int | None = None
    rope_finetuned: bool | None = None

    ftype: GGMLFileType | None = None

    # path to the directory containing the model files
    path_model: Path | None = None

    @staticmethod
    def guessed(model: LazyModel) -> Params:
        # try transformer naming first
        n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape

        # try transformer naming first
        if "model.layers.0.self_attn.q_proj.weight" in model:
            n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
        elif "model.layers.0.self_attn.W_pack.weight" in model:   # next: try baichuan naming
            n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
        else:
            n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)

        if n_layer < 1:
            msg = """\
                failed to guess 'n_layer'. This model is unknown or unsupported.
                Suggestion: provide 'config.json' of the model in the same directory containing model files."""
            raise KeyError(textwrap.dedent(msg))

        n_head = n_embd // 128 # guessed
        n_mult = 256           # guessed

        # TODO: verify this
        n_ff = int(2 * (4 * n_embd) / 3)
        n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)

        return Params(
            n_vocab    = n_vocab,
            n_embd     = n_embd,
            n_layer    = n_layer,
            n_ctx      = -1,
            n_ff       = n_ff,
            n_head     = n_head,
            n_head_kv  = n_head,
            f_norm_eps = 1e-5,
        )

    @staticmethod
    def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
        with open(config_path) as f:
            config = json.load(f)

        rope_scaling_type = f_rope_scale = n_ctx_orig = rope_finetuned = None
        rope_scaling = config.get("rope_scaling")

        if rope_scaling is not None and (typ := rope_scaling.get("type")):
            rope_factor = rope_scaling.get("factor")
            f_rope_scale = rope_factor
            if typ == "linear":
                rope_scaling_type = gguf.RopeScalingType.LINEAR
            elif typ == "yarn":
                rope_scaling_type = gguf.RopeScalingType.YARN
                n_ctx_orig = rope_scaling['original_max_position_embeddings']
                rope_finetuned = rope_scaling['finetuned']
            else:
                raise NotImplementedError(f'Unknown rope scaling type: {typ}')

        if "max_sequence_length" in config:
            n_ctx = config["max_sequence_length"]
        elif "max_position_embeddings" in config:
            n_ctx = config["max_position_embeddings"]
        else:
            msg = """\
                failed to guess 'n_ctx'. This model is unknown or unsupported.
                Suggestion: provide 'config.json' of the model in the same directory containing model files."""
            raise KeyError(textwrap.dedent(msg))

        n_experts      = None
        n_experts_used = None

        if "num_local_experts" in config:
            n_experts = config["num_local_experts"]
            n_experts_used = config["num_experts_per_tok"]

        return Params(
            n_vocab           = config["vocab_size"],
            n_embd            = config["hidden_size"],
            n_layer           = config["num_hidden_layers"],
            n_ctx             = n_ctx,
            n_ff              = config["intermediate_size"],
            n_head            = (n_head := config["num_attention_heads"]),
            n_head_kv         = config.get("num_key_value_heads", n_head),
            n_experts         = n_experts,
            n_experts_used    = n_experts_used,
            f_norm_eps        = config["rms_norm_eps"],
            f_rope_freq_base  = config.get("rope_theta"),
            rope_scaling_type = rope_scaling_type,
            f_rope_scale      = f_rope_scale,
            n_ctx_orig        = n_ctx_orig,
            rope_finetuned    = rope_finetuned,
        )

    # LLaMA v2 70B params.json
    # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
    @staticmethod
    def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
        with open(config_path) as f:
            config = json.load(f)

        n_experts      = None
        n_experts_used = None
        f_rope_freq_base = None
        n_ff = None

        # hack to determine LLaMA v1 vs v2 vs CodeLlama
        if config.get("moe"):
            # Mixtral
            n_ctx = 32768
        elif config.get("rope_theta") == 1000000:
            # CodeLlama
            n_ctx = 16384
        elif config["norm_eps"] == 1e-05:
            # LLaMA v2
            n_ctx = 4096
        else:
            # LLaMA v1
            n_ctx = 2048

        if "layers.0.feed_forward.w1.weight" in model:
            n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]

        if config.get("moe"):
            n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
            n_experts      = config["moe"]["num_experts"]
            n_experts_used = config["moe"]["num_experts_per_tok"]
            f_rope_freq_base = 1e6

        assert n_ff is not None

        return Params(
            n_vocab          = model["tok_embeddings.weight"].shape[0],
            n_embd           = config["dim"],
            n_layer          = config["n_layers"],
            n_ctx            = n_ctx,
            n_ff             = n_ff,
            n_head           = (n_head := config["n_heads"]),
            n_head_kv        = config.get("n_kv_heads", n_head),
            n_experts        = n_experts,
            n_experts_used   = n_experts_used,
            f_norm_eps       = config["norm_eps"],
            f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
        )

    @staticmethod
    def load(model_plus: ModelPlus) -> Params:
        hf_config_path   = model_plus.paths[0].parent / "config.json"
        orig_config_path = model_plus.paths[0].parent / "params.json"

        if hf_config_path.exists():
            params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
        elif orig_config_path.exists():
            params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
        elif model_plus.format != 'none':
            params = Params.guessed(model_plus.model)
        else:
            raise ValueError('Cannot guess params when model format is none')

        params.path_model = model_plus.paths[0].parent

        return params


#
# data loading
# TODO: reuse (probably move to gguf.py?)
#


def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
    if n_head_kv is not None and n_head != n_head_kv:
        n_head = n_head_kv
    return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
            .swapaxes(1, 2)
            .reshape(weights.shape))


class Tensor(ABC):
    ndarray: NDArray
    data_type: DataType

    @abstractmethod
    def astype(self, data_type: DataType) -> Self: ...
    @abstractmethod
    def permute(self, n_head: int, n_head_kv: int) -> Self: ...
    @abstractmethod
    def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> Self: ...
    @abstractmethod
    def part(self, n_part: int) -> Self: ...
    @abstractmethod
    def to_ggml(self) -> GGMLCompatibleTensor: ...


def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
    assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
    fp32_arr = bf16_arr.astype(np.uint32) << 16
    return fp32_arr.view(np.float32)


class UnquantizedTensor(Tensor):
    def __init__(self, ndarray: NDArray):
        assert isinstance(ndarray, np.ndarray)
        self.ndarray = ndarray
        self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]

    def astype(self, data_type: DataType) -> UnquantizedTensor:
        dtype = data_type.dtype
        if self.data_type == DT_BF16:
            self.ndarray = bf16_to_fp32(self.ndarray)
        return UnquantizedTensor(self.ndarray.astype(dtype))

    def to_ggml(self) -> Self:
        return self

    def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
        r = self.ndarray.shape[0] // 3
        return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))

    def part(self, n_part: int) -> UnquantizedTensor:
        r = self.ndarray.shape[0] // 3
        return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])

    def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
        return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))


def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
    tensor = lazy_tensor.load()
    assert isinstance(tensor, UnquantizedTensor)

    # double-check:
    actual_shape = list(tensor.ndarray.shape)
    assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
    if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
        if convert:
            tensor.ndarray = tensor.ndarray.astype(expected_dtype)
        else:
            raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')

    return tensor.ndarray


GGMLCompatibleTensor = UnquantizedTensor


@dataclass
class LazyTensor:
    _load: Callable[[], Tensor]
    shape: list[int]
    data_type: DataType
    description: str

    def load(self) -> Tensor:
        ret = self._load()
        # Should be okay if it maps to the same numpy type?
        assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
            (self.data_type, ret.data_type, self.description)
        return ret

    def astype(self, data_type: DataType) -> LazyTensor:
        self.validate_conversion_to(data_type)

        def load() -> Tensor:
            return self.load().astype(data_type)
        return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')

    def validate_conversion_to(self, data_type: DataType) -> None:
        if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
            raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')


LazyModel: TypeAlias = 'dict[str, LazyTensor]'

ModelFormat: TypeAlias = Literal['ggml', 'torch', 'safetensors', 'none']

@dataclass
class ModelPlus:
    model: LazyModel
    paths: list[Path]  # Where this was read from.
    format: ModelFormat
    vocab: BaseVocab | None  # For GGML models (which have vocab built in), the vocab.


def merge_sharded(models: list[LazyModel]) -> LazyModel:
    # Original LLaMA models have each file contain one part of each tensor.
    # Use a dict instead of a set to preserve order.
    names = {name: None for model in models for name in model}

    def convert(name: str) -> LazyTensor:
        lazy_tensors = [model[name] for model in models]
        if len(lazy_tensors) == 1:
            # only one file; don't go through this procedure since there might
            # be quantized tensors
            return lazy_tensors[0]
        if len(lazy_tensors[0].shape) == 1:
            # the tensor is just duplicated in every file
            return lazy_tensors[0]
        if name.startswith('tok_embeddings.') or \
           name.endswith('.attention.wo.weight') or \
           name.endswith('.feed_forward.w2.weight'):
            # split by columns
            axis = 1
        else:
            # split by rows
            axis = 0
        concatenated_shape = list(lazy_tensors[0].shape)
        concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)

        def load() -> UnquantizedTensor:
            ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
            concatenated = np.concatenate(ndarrays, axis=axis)
            return UnquantizedTensor(concatenated)
        description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
        return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
    return {name: convert(name) for name in names}


def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
    formats: set[ModelFormat] = set(mp.format for mp in models_plus)
    assert len(formats) == 1, "different formats?"
    format = formats.pop()
    paths = [path for mp in models_plus for path in mp.paths]
    # Use the first non-None vocab, if any.
    try:
        vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
    except StopIteration:
        vocab = None

    if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
        # Transformers models put different tensors in different files, but
        # don't split individual tensors between files.
        model: LazyModel = {}
        for mp in models_plus:
            model.update(mp.model)
    else:
        model = merge_sharded([mp.model for mp in models_plus])

    return ModelPlus(model, paths, format, vocab)


def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
    def load() -> Tensor:
        return lazy_tensor.load().permute(n_head, n_head_kv)
    return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)


def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
    def load() -> Tensor:
        return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
    s = lazy_tensor.shape.copy()
    s[0] = s[0] // 3
    return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)


def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
    def load() -> Tensor:
        return lazy_tensor.load().part(n_part)
    s = lazy_tensor.shape.copy()
    s[0] = s[0] // 3
    return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)


def pack_experts_lazy(lazy_tensors: list[LazyTensor]) -> LazyTensor:
    def load() -> Tensor:
        tensors = [lazy_tensor.load() for lazy_tensor in lazy_tensors]
        return UnquantizedTensor(np.array([tensor.ndarray for tensor in tensors]))
    s = lazy_tensors[0].shape.copy()
    s.insert(0, len(lazy_tensors))
    return LazyTensor(load, s, lazy_tensors[0].data_type, 'pack_experts ' + ' | '.join(lt.description for lt in lazy_tensors))


# Functionality that simulates `torch.load` but where individual tensors are
# only loaded into memory on demand, not all at once.
# PyTorch can't do this natively as of time of writing:
# - https://github.com/pytorch/pytorch/issues/64327
# This allows us to de-shard without multiplying RAM usage, and also
# conveniently drops the PyTorch dependency (though we still need numpy).


@dataclass
class LazyStorageKind:
    data_type: DataType


@dataclass
class LazyStorage:
    load: Callable[[int, int], NDArray]
    kind: LazyStorageKind
    description: str


class LazyUnpickler(pickle.Unpickler):
    def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
        super().__init__(fp)
        self.data_base_path = data_base_path
        self.zip_file = zip_file

    def persistent_load(self, pid: Any) -> Any:
        assert pid[0] == 'storage'
        assert isinstance(pid[1], LazyStorageKind)
        data_type = pid[1].data_type
        filename_stem = pid[2]
        filename = f'{self.data_base_path}/{filename_stem}'
        info = self.zip_file.getinfo(filename)

        def load(offset: int, elm_count: int) -> NDArray:
            dtype = data_type.dtype
            with self.zip_file.open(info) as fp:
                fp.seek(offset * dtype.itemsize)
                size = elm_count * dtype.itemsize
                data = fp.read(size)
            assert len(data) == size
            return np.frombuffer(data, dtype)
        description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
        return LazyStorage(load=load, kind=pid[1], description=description)

    @staticmethod
    def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
                               requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
        assert isinstance(storage, LazyStorage)

        def load() -> UnquantizedTensor:
            elm_count = stride[0] * size[0]
            return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
        description = f'pickled storage_offset={storage_offset} in {storage.description}'
        return LazyTensor(load, list(size), storage.kind.data_type, description)

    @staticmethod
    def rebuild_from_type_v2(func, new_type, args, state):
        return func(*args)

    CLASSES: dict[tuple[str, str], type[LazyTensor] | LazyStorageKind] = {
        # getattr used here as a workaround for mypy not being smart enough to determine
        # the staticmethods have a __func__ attribute.
        ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
        ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
        ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
        ('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
        ('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
        ('torch', 'IntStorage'): LazyStorageKind(DT_I32),
        ('torch', 'Tensor'): LazyTensor,
    }

    def find_class(self, module: str, name: str) -> Any:
        if not module.startswith('torch'):
            return super().find_class(module, name)
        return self.CLASSES[(module, name)]


def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
    zf = zipfile.ZipFile(outer_fp)
    pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
    assert len(pickle_paths) == 1, pickle_paths
    pickle_fp = zf.open(pickle_paths[0], 'r')
    unpickler = LazyUnpickler(pickle_fp,
                              data_base_path=pickle_paths[0][:-4],
                              zip_file=zf)
    model = unpickler.load()
    if 'model' in model: model = model['model']
    as_dict = dict(model.items())
    return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)


def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
    header_size, = struct.unpack('<Q', fp.read(8))
    header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
    # Use mmap for the actual data to avoid race conditions with the file offset.
    mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
    byte_buf = mapped[8 + header_size:]

    def convert(info: dict[str, Any]) -> LazyTensor:
        data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
        numpy_dtype = data_type.dtype
        shape: list[int] = info['shape']
        begin, end = info['data_offsets']
        assert 0 <= begin <= end <= len(byte_buf)
        assert end - begin == math.prod(shape) * numpy_dtype.itemsize
        buf = byte_buf[begin:end]

        def load() -> UnquantizedTensor:
            return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
        description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
        return LazyTensor(load, shape, data_type, description)
    model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
    return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)


def must_read(fp: IO[bytes], length: int) -> bytes:
    ret = fp.read(length)
    if len(ret) < length:
        raise EOFError("unexpectedly reached end of file")
    return ret


@functools.lru_cache(maxsize=None)
def lazy_load_file(path: Path) -> ModelPlus:
    fp = open(path, 'rb')
    first8 = fp.read(8)
    fp.seek(0)
    if first8[:2] == b'PK':
        # A zip file, i.e. PyTorch format
        return lazy_load_torch_file(fp, path)
    elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
        # Probably safetensors
        return lazy_load_safetensors_file(fp, path)
    else:
        raise ValueError(f"unknown format: {path}")


In = TypeVar('In')
Out = TypeVar('Out')


def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
    '''Parallel map, but with backpressure.  If the caller doesn't call `next`
    fast enough, this will stop calling `func` at some point rather than
    letting results pile up in memory.  Specifically, there is a max of one
    output value buffered per thread.'''
    if concurrency < 2:
        yield from map(func, iterable)
        # Not reached.
    iterable = iter(iterable)
    executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
    if use_processpool_executor:
        executor_class = ProcessPoolExecutor
    else:
        executor_class = ThreadPoolExecutor
    with executor_class(max_workers=max_workers) as executor:
        futures: list[concurrent.futures.Future[Out]] = []
        done = False
        for _ in range(concurrency):
            try:
                futures.append(executor.submit(func, next(iterable)))
            except StopIteration:
                done = True
                break

        while futures:
            result = futures.pop(0).result()
            while not done and len(futures) < concurrency:
                try:
                    futures.append(executor.submit(func, next(iterable)))
                except StopIteration:
                    done = True
                    break
            yield result


def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False) -> None:
    # Handle special case where the model's vocab size is not set
    if params.n_vocab == -1:
        raise ValueError(
            "The model's vocab size is set to -1 in params.json. Please update it manually."
            + (f" Maybe {vocab.vocab_size}?" if isinstance(vocab, Vocab) else ""),
        )
    if not isinstance(vocab, Vocab):
        return  # model has no vocab

    # Check for a vocab size mismatch
    if params.n_vocab == vocab.vocab_size:
        logger.warning("Ignoring added_tokens.json since model matches vocab size without it.")
        return

    if pad_vocab and params.n_vocab > vocab.vocab_size:
        pad_count = params.n_vocab - vocab.vocab_size
        logger.debug(
            f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>"
        )
        for i in range(1, pad_count + 1):
            vocab.added_tokens_dict[f"<dummy{i:05}>"] = -1
            vocab.added_tokens_list.append(f"<dummy{i:05}>")
        vocab.vocab_size = params.n_vocab
        return

    msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})."
    if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
        msg += f"  Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
    if vocab.vocab_size < params.n_vocab:
        msg += " Add the --pad-vocab option and try again."

    raise ValueError(msg)


class OutputFile:
    def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
        self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)

    def add_meta_model(self, params: Params, metadata: gguf.Metadata | None) -> None:
        # Metadata About The Model And Its Provenence
        name = "LLaMA"
        if metadata is not None and metadata.name is not None:
            name = metadata.name
        elif params.path_model is not None:
            name = params.path_model.name
        elif params.n_ctx == 4096:
            # Heuristic detection of LLaMA v2 model
            name = "LLaMA v2"

        self.gguf.add_name(name)

        if metadata is not None:
            if metadata.author is not None:
                self.gguf.add_author(metadata.author)
            if metadata.version is not None:
                self.gguf.add_version(metadata.version)
            if metadata.organization is not None:
                self.gguf.add_organization(metadata.organization)

            if metadata.finetune is not None:
                self.gguf.add_finetune(metadata.finetune)
            if metadata.basename is not None:
                self.gguf.add_basename(metadata.basename)

            if metadata.description is not None:
                self.gguf.add_description(metadata.description)
            if metadata.quantized_by is not None:
                self.gguf.add_quantized_by(metadata.quantized_by)

            if metadata.size_label is not None:
                self.gguf.add_size_label(metadata.size_label)

            if metadata.license is not None:
                self.gguf.add_license(metadata.license)
            if metadata.license_name is not None:
                self.gguf.add_license_name(metadata.license_name)
            if metadata.license_link is not None:
                self.gguf.add_license_link(metadata.license_link)

            if metadata.url is not None:
                self.gguf.add_url(metadata.url)
            if metadata.doi is not None:
                self.gguf.add_doi(metadata.doi)
            if metadata.uuid is not None:
                self.gguf.add_uuid(metadata.uuid)
            if metadata.repo_url is not None:
                self.gguf.add_repo_url(metadata.repo_url)

            if metadata.source_url is not None:
                self.gguf.add_source_url(metadata.source_url)
            if metadata.source_doi is not None:
                self.gguf.add_source_doi(metadata.source_doi)
            if metadata.source_uuid is not None:
                self.gguf.add_source_uuid(metadata.source_uuid)
            if metadata.source_repo_url is not None:
                self.gguf.add_source_repo_url(metadata.source_repo_url)

            if metadata.base_models is not None:
                self.gguf.add_base_model_count(len(metadata.base_models))
                for key, base_model_entry in enumerate(metadata.base_models):
                    if "name" in base_model_entry:
                        self.gguf.add_base_model_name(key, base_model_entry["name"])
                    if "author" in base_model_entry:
                        self.gguf.add_base_model_author(key, base_model_entry["author"])
                    if "version" in base_model_entry:
                        self.gguf.add_base_model_version(key, base_model_entry["version"])
                    if "organization" in base_model_entry:
                        self.gguf.add_base_model_organization(key, base_model_entry["organization"])
                    if "description" in base_model_entry:
                        self.gguf.add_base_model_description(key, base_model_entry["description"])
                    if "url" in base_model_entry:
                        self.gguf.add_base_model_url(key, base_model_entry["url"])
                    if "doi" in base_model_entry:
                        self.gguf.add_base_model_doi(key, base_model_entry["doi"])
                    if "uuid" in base_model_entry:
                        self.gguf.add_base_model_uuid(key, base_model_entry["uuid"])
                    if "repo_url" in base_model_entry:
                        self.gguf.add_base_model_repo_url(key, base_model_entry["repo_url"])

            if metadata.datasets is not None:
                self.gguf.add_dataset_count(len(metadata.datasets))
                for key, dataset_entry in enumerate(metadata.datasets):
                    if "name" in dataset_entry:
                        self.gguf.add_dataset_name(key, dataset_entry["name"])
                    if "author" in dataset_entry:
                        self.gguf.add_dataset_author(key, dataset_entry["author"])
                    if "version" in dataset_entry:
                        self.gguf.add_dataset_version(key, dataset_entry["version"])
                    if "organization" in dataset_entry:
                        self.gguf.add_dataset_organization(key, dataset_entry["organization"])
                    if "description" in dataset_entry:
                        self.gguf.add_dataset_description(key, dataset_entry["description"])
                    if "url" in dataset_entry:
                        self.gguf.add_dataset_url(key, dataset_entry["url"])
                    if "doi" in dataset_entry:
                        self.gguf.add_dataset_doi(key, dataset_entry["doi"])
                    if "uuid" in dataset_entry:
                        self.gguf.add_dataset_uuid(key, dataset_entry["uuid"])
                    if "repo_url" in dataset_entry:
                        self.gguf.add_dataset_repo_url(key, dataset_entry["repo_url"])

            if metadata.tags is not None:
                self.gguf.add_tags(metadata.tags)
            if metadata.languages is not None:
                self.gguf.add_languages(metadata.languages)

    def add_meta_arch(self, params: Params) -> None:
        # Metadata About The Neural Architecture Itself
        self.gguf.add_vocab_size(params.n_vocab)
        self.gguf.add_context_length(params.n_ctx)
        self.gguf.add_embedding_length(params.n_embd)
        self.gguf.add_block_count(params.n_layer)
        self.gguf.add_feed_forward_length(params.n_ff)
        self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
        self.gguf.add_head_count          (params.n_head)
        self.gguf.add_head_count_kv       (params.n_head_kv)

        if params.n_experts:
            self.gguf.add_expert_count(params.n_experts)

        if params.n_experts_used:
            self.gguf.add_expert_used_count(params.n_experts_used)

        if params.f_norm_eps:
            self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
        else:
            raise ValueError('f_norm_eps is None')

        if params.f_rope_freq_base is not None:
            self.gguf.add_rope_freq_base(params.f_rope_freq_base)

        if params.rope_scaling_type:
            assert params.f_rope_scale is not None
            self.gguf.add_rope_scaling_type(params.rope_scaling_type)
            self.gguf.add_rope_scaling_factor(params.f_rope_scale)

        if params.n_ctx_orig is not None:
            self.gguf.add_rope_scaling_orig_ctx_len(params.n_ctx_orig)

        if params.rope_finetuned is not None:
            self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)

        if params.ftype is not None:
            self.gguf.add_file_type(params.ftype)

    def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
        tokens = []
        scores = []
        toktypes = []

        # NOTE: `all_tokens` returns the base vocabulary and added tokens
        for text, score, toktype in vocab.all_tokens():
            tokens.append(text)
            scores.append(score)
            toktypes.append(toktype)

        assert len(tokens) == vocab.vocab_size

        return tokens, scores, toktypes

    def add_meta_vocab(self, vocab: Vocab) -> None:
        # Ensure that tokenizer_model is added to the GGUF model
        self.gguf.add_tokenizer_model(vocab.tokenizer_model)

        # Extract model vocabulary for model conversion
        tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab)

        # Add extracted token information for model conversion
        self.gguf.add_token_list(tokens)
        self.gguf.add_token_scores(scores)
        self.gguf.add_token_types(toktypes)

    def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
        svocab.add_to_gguf(self.gguf)

    def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
        n_elements = int(np.prod(tensor.shape))
        raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
        data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
        data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
        self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype)

    def write_meta(self) -> None:
        self.gguf.write_header_to_file()
        self.gguf.write_kv_data_to_file()

    def write_tensor_info(self) -> None:
        self.gguf.write_ti_data_to_file()

    def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None:
        ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency)
        if ftype == GGMLFileType.MostlyQ8_0:
            ndarrays = bounded_parallel_map(
                OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
                use_processpool_executor=True,
            )
        else:
            ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)

        start = time.time()
        for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
            elapsed = time.time() - start
            size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
            padi = len(str(len(model)))
            logger.info(
                f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
            )
            self.gguf.write_tensor_data(ndarray)

    def close(self) -> None:
        self.gguf.close()

    @staticmethod
    def write_vocab_only(
        fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
        endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: gguf.Metadata | None = None,
    ) -> None:
        check_vocab_size(params, vocab, pad_vocab=pad_vocab)

        of = OutputFile(fname_out, endianess=endianess)

        # meta data
        of.add_meta_model(params, metadata)
        of.add_meta_arch(params)
        of.add_meta_vocab(vocab)
        of.add_meta_special_vocab(svocab)

        of.write_meta()

        of.close()

    @staticmethod
    def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
        name, lazy_tensor = item
        tensor = lazy_tensor.load().to_ggml()
        return (lazy_tensor.data_type, tensor.ndarray)

    @staticmethod
    def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
        dt, arr = item
        if not isinstance(dt, QuantizedDataType):
            return arr
        return dt.quantize(arr)

    @staticmethod
    def write_all(
        fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
        concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
        pad_vocab: bool = False,
        metadata: gguf.Metadata | None = None,
    ) -> None:
        check_vocab_size(params, vocab, pad_vocab=pad_vocab)

        of = OutputFile(fname_out, endianess=endianess)

        # meta data
        of.add_meta_model(params, metadata)
        of.add_meta_arch(params)
        if isinstance(vocab, Vocab):
            of.add_meta_vocab(vocab)
            of.add_meta_special_vocab(svocab)
        else:  # NoVocab
            of.gguf.add_tokenizer_model(vocab.tokenizer_model)

        # tensor info
        for name, lazy_tensor in model.items():
            of.add_tensor_info(name, lazy_tensor)

        of.write_meta()
        of.write_tensor_info()

        # tensor data
        of.write_tensor_data(ftype, model, concurrency)

        of.close()


def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
    wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type

    if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
        return GGMLFileType.AllF32
    if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
        return GGMLFileType.MostlyF16
    if output_type_str == "q8_0":
        return GGMLFileType.MostlyQ8_0

    name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}

    raise ValueError(f"Unexpected combination of types: {name_to_type}")


def per_model_weight_count_estimation(tensors: Iterable[tuple[str, LazyTensor]]) -> tuple[int, int, int]:
    total_params = 0
    shared_params = 0
    expert_params = 0

    for name, lazy_tensor in tensors:
        # We don't need these
        if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
            continue

        # Got A Tensor
        sum_weights_in_tensor: int = 1

        # Tensor Volume
        for dim in lazy_tensor.shape:
            sum_weights_in_tensor *= dim

        if ".experts." in name:
            if ".experts.0." in name:
                expert_params += sum_weights_in_tensor
        else:
            shared_params += sum_weights_in_tensor

        total_params += sum_weights_in_tensor

    return total_params, shared_params, expert_params


def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
    return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
            for (name, tensor) in model.items()}


def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> LazyModel:
    tmap = gguf.TensorNameMap(ARCH, params.n_layer)
    should_skip = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))

    tmp = model

    # merge experts into one tensor
    if params.n_experts and params.n_experts > 0:
        for i_l in range(params.n_layer):
            for w in range(1, 4):
                experts = []
                for e in range(params.n_experts):
                    if f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight" in model:
                        experts.append(model[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"])
                        del tmp[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"]
                    elif f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight" in model:
                        experts.append(model[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"])
                        del tmp[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"]
                    else:
                        raise ValueError(f"Expert tensor not found: layers.{i_l}.feed_forward.experts.{e}.w{w}.weight")
                tmp[f"layers.{i_l}.feed_forward.experts.w{w}.weight"] = pack_experts_lazy(experts)

    # HF models permut or pack some of the tensors, so we need to undo that
    for i in itertools.count():
        if f"model.layers.{i}.self_attn.q_proj.weight" in model:
            logger.debug(f"Permuting layer {i}")
            tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
            tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
            # tmp[f"model.layers.{i}.self_attn.v_proj.weight"] =              model[f"model.layers.{i}.self_attn.v_proj.weight"]
        elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
            logger.debug(f"Unpacking and permuting layer {i}")
            tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
            tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
            tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy        (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
            del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
        else:
            break

    out: LazyModel = {}
    for name, lazy_tensor in model.items():
        tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
        if name_new is None:
            if skip_unknown:
                logger.warning(f"Unexpected tensor name: {name} - skipping")
                continue
            raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")

        if tensor_type in should_skip:
            logger.debug(f"skipping tensor {name_new}")
            continue

        logger.debug(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
        out[name_new] = lazy_tensor

    return out


def nth_multifile_path(path: Path, n: int) -> Path | None:
    '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
    the nth path in the model.
    '''
    # Support the following patterns:
    patterns = [
        # - x.00.pth, x.01.pth, etc.
        (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
        # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
        (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
        # x.bin, x.bin.1, etc.
        (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
    ]
    for regex, replacement in patterns:
        if re.search(regex, path.name):
            new_path = path.with_name(re.sub(regex, replacement, path.name))
            if new_path.exists():
                return new_path
    return None


def find_multifile_paths(path: Path) -> list[Path]:
    '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
    the whole list of paths in the model.
    '''
    ret: list[Path] = []
    for i in itertools.count():
        nth_path = nth_multifile_path(path, i)
        if nth_path is None:
            break
        ret.append(nth_path)
    if not ret:
        # No matches.  This should only happen if the file was named, e.g.,
        # foo.0, and there was no file named foo.  Oh well, try to process it
        # as a single file.
        return [path]
    return ret


def load_some_model(path: Path) -> ModelPlus:
    '''Load a model of any supported format.'''
    # Be extra-friendly and accept either a file or a directory:
    if path.is_dir():
        # Check if it's a set of safetensors files first
        globs = ["model-00001-of-*.safetensors", "model.safetensors", "consolidated.safetensors"]
        files = [file for glob in globs for file in path.glob(glob)]
        if not files:
            # Try the PyTorch patterns too, with lower priority
            globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
            files = [file for glob in globs for file in path.glob(glob)]
        if not files:
            raise FileNotFoundError(f"Can't find model in directory {path}")
        if len(files) > 1:
            raise ValueError(f"Found multiple models in {path}, not sure which to pick: {files}")
        path = files[0]

    paths = find_multifile_paths(path)
    models_plus: list[ModelPlus] = []
    for path in paths:
        logger.info(f"Loading model file {path}")
        models_plus.append(lazy_load_file(path))

    model_plus = merge_multifile_models(models_plus)
    return model_plus


class VocabFactory:
    _VOCAB_CLASSES: list[type[Vocab]] = [SentencePieceVocab, BpeVocab, LlamaHfVocab]

    def __init__(self, path: Path):
        self.path = path

    def _create_special_vocab(self, vocab: BaseVocab, model_parent_path: Path) -> gguf.SpecialVocab:
        load_merges = vocab.name == "bpe"
        n_vocab = vocab.vocab_size if isinstance(vocab, Vocab) else None
        return gguf.SpecialVocab(
            model_parent_path,
            load_merges=load_merges,
            special_token_types=None,  # Predetermined or passed as a parameter
            n_vocab=n_vocab,
        )

    def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab:
        vocab_classes: dict[str, type[Vocab]] = {cls.name: cls for cls in self._VOCAB_CLASSES}
        selected_vocabs: dict[str, type[Vocab]] = {}
        for vtype in vocab_types:
            try:
                selected_vocabs[vtype] = vocab_classes[vtype]
            except KeyError:
                raise ValueError(f"Unsupported vocabulary type {vtype}") from None

        for vtype, cls in selected_vocabs.items():
            try:
                vocab = cls(self.path)
                break
            except FileNotFoundError:
                pass  # ignore unavailable tokenizers
        else:
            raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}")

        logger.info(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}")
        return vocab

    def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]:
        vocab: BaseVocab
        if vocab_types is None:
            vocab = NoVocab()
        else:
            vocab = self._create_vocab_by_path(vocab_types)
        # FIXME: Respect --vocab-dir?
        special_vocab = self._create_special_vocab(
            vocab,
            model_parent_path,
        )
        return vocab, special_vocab


def default_convention_outfile(file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> str:
    name = metadata.name if metadata.name is not None else None
    basename = metadata.basename if metadata.basename is not None else None
    finetune = metadata.finetune if metadata.finetune is not None else None
    version = metadata.version if metadata.version is not None else None
    size_label = metadata.size_label if metadata.size_label is not None else gguf.size_label(*model_params_count, expert_count=expert_count or 0)

    output_type = {
        GGMLFileType.AllF32:    "F32",
        GGMLFileType.MostlyF16: "F16",
        GGMLFileType.MostlyQ8_0: "Q8_0",
    }[file_type]

    return gguf.naming_convention(name, basename, finetune, version, size_label, output_type)


def default_outfile(model_paths: list[Path], file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> Path:
    default_filename = default_convention_outfile(file_type, expert_count, model_params_count, metadata)
    ret = model_paths[0].parent / f"{default_filename}.gguf"
    if ret in model_paths:
        logger.error(
            f"Error: Default output path ({ret}) would overwrite the input. "
            "Please explicitly specify a path using --outfile.")
        sys.exit(1)
    return ret


def do_dump_model(model_plus: ModelPlus) -> None:
    print(f"model_plus.paths = {model_plus.paths!r}") # noqa: NP100
    print(f"model_plus.format = {model_plus.format!r}") # noqa: NP100
    print(f"model_plus.vocab = {model_plus.vocab!r}") # noqa: NP100
    for name, lazy_tensor in model_plus.model.items():
        print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") # noqa: NP100


def main(args_in: list[str] | None = None) -> None:
    output_choices = ["f32", "f16"]
    if np.uint32(1) == np.uint32(1).newbyteorder("<"):
        # We currently only support Q8_0 output on little endian systems.
        output_choices.append("q8_0")
    parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
    parser.add_argument("--dump",         action="store_true",    help="don't convert, just show what's in the model")
    parser.add_argument("--dump-single",  action="store_true",    help="don't convert, just show what's in a single model file")
    parser.add_argument("--vocab-only",   action="store_true",    help="extract only the vocab")
    parser.add_argument("--no-vocab",     action="store_true",    help="store model without the vocab")
    parser.add_argument("--outtype",      choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
    parser.add_argument("--vocab-dir",    type=Path,              help="directory containing tokenizer.model, if separate from model file")
    parser.add_argument("--vocab-type",                           help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
    parser.add_argument("--outfile",      type=Path,              help="path to write to; default: based on input")
    parser.add_argument("model",          type=Path,              help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
    parser.add_argument("--ctx",          type=int,               help="model training context (default: based on input)")
    parser.add_argument("--concurrency",  type=int,               help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY)
    parser.add_argument("--big-endian",   action="store_true",    help="model is executed on big endian machine")
    parser.add_argument("--pad-vocab",    action="store_true",    help="add pad tokens when model vocab expects more than tokenizer metadata provides")
    parser.add_argument("--skip-unknown", action="store_true",    help="skip unknown tensor names instead of failing")
    parser.add_argument("--verbose",      action="store_true",    help="increase output verbosity")
    parser.add_argument("--metadata",     type=Path,              help="Specify the path for an authorship metadata override file")
    parser.add_argument("--get-outfile",  action="store_true",    help="get calculated default outfile name")
    parser.add_argument("--model-name",   type=str, default=None, help="name of the model")

    args = parser.parse_args(args_in)

    if args.verbose:
        logging.basicConfig(level=logging.DEBUG)
    elif args.dump_single or args.dump or args.get_outfile:
        # Avoid printing anything besides the dump output
        logging.basicConfig(level=logging.WARNING)
    else:
        logging.basicConfig(level=logging.INFO)

    model_name = args.model_name
    dir_model = args.model

    metadata = gguf.Metadata.load(args.metadata, dir_model, model_name)

    if args.get_outfile:
        model_plus = load_some_model(dir_model)
        params = Params.load(model_plus)
        model = convert_model_names(model_plus.model, params, args.skip_unknown)
        model_params_count = per_model_weight_count_estimation(model_plus.model.items())
        ftype = pick_output_type(model, args.outtype)

        if (metadata is None or metadata.name is None) and params.path_model is not None:
            metadata.name = params.path_model.name

        print(f"{default_convention_outfile(ftype, params.n_experts, model_params_count, metadata)}") # noqa: NP100
        return

    if args.no_vocab and args.vocab_only:
        raise ValueError("--vocab-only does not make sense with --no-vocab")

    if args.dump_single:
        model_plus = lazy_load_file(dir_model)
        do_dump_model(model_plus)
        return

    if not args.vocab_only:
        model_plus = load_some_model(dir_model)
    else:
        model_plus = ModelPlus(model = {}, paths = [dir_model / 'dummy'], format = 'none', vocab = None)

    if args.dump:
        do_dump_model(model_plus)
        return

    endianess = gguf.GGUFEndian.LITTLE
    if args.big_endian:
        endianess = gguf.GGUFEndian.BIG

    params = None
    if args.pad_vocab or not args.vocab_only:
        params = Params.load(model_plus)
        if params.n_ctx == -1:
            if args.ctx is None:
                msg = """\
                    The model doesn't have a context size, and you didn't specify one with --ctx
                    Please specify one with --ctx:
                     - LLaMA v1: --ctx 2048
                     - LLaMA v2: --ctx 4096"""
                parser.error(textwrap.dedent(msg))
            params.n_ctx = args.ctx

        if args.outtype:
            params.ftype = {
                "f32": GGMLFileType.AllF32,
                "f16": GGMLFileType.MostlyF16,
                "q8_0": GGMLFileType.MostlyQ8_0,
            }[args.outtype]

        logger.info(f"params = {params}")

    model_parent_path = model_plus.paths[0].parent
    vocab_path = Path(args.vocab_dir or dir_model or model_parent_path)
    vocab_factory = VocabFactory(vocab_path)
    vocab_types = None if args.no_vocab else args.vocab_type.split(",")
    vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path)

    if args.vocab_only:
        assert isinstance(vocab, Vocab)
        if not args.outfile:
            raise ValueError("need --outfile if using --vocab-only")
        outfile = args.outfile
        if params is None:
            params = Params(
                n_vocab    = vocab.vocab_size,
                n_embd     = 1,
                n_layer    = 1,
                n_ctx      = 1,
                n_ff       = 1,
                n_head     = 1,
                n_head_kv  = 1,
                f_norm_eps = 1e-5,
            )
        OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
                                    endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
        logger.info(f"Wrote {outfile}")
        return

    if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab:
        vocab = model_plus.vocab

    assert params is not None

    if metadata.name is None and params.path_model is not None:
        metadata.name = params.path_model.name

    model_params_count = per_model_weight_count_estimation(model_plus.model.items())
    logger.info(f"model parameters count : {model_params_count} ({gguf.model_weight_count_rounded_notation(model_params_count[0])})")

    logger.info(f"Vocab info: {vocab}")
    logger.info(f"Special vocab info: {special_vocab}")
    model   = model_plus.model
    model   = convert_model_names(model, params, args.skip_unknown)
    ftype   = pick_output_type(model, args.outtype)
    model   = convert_to_output_type(model, ftype)
    outfile = args.outfile or default_outfile(model_plus.paths, ftype, params.n_experts, model_params_count, metadata=metadata)

    metadata.size_label = gguf.size_label(*model_params_count, expert_count=params.n_experts or 0)

    params.ftype = ftype
    logger.info(f"Writing {outfile}, format {ftype}")

    OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
                         concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
    logger.info(f"Wrote {outfile}")


if __name__ == '__main__':
    main()