File size: 11,440 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#include "common.h"
#include "llama.h"
#include "ggml.h"

#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif

#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif

#include <cstdio>
#include <ctime>
#include <random>
#include <string>
#include <vector>

#define DEBUG_POS 5

static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) {
    printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]);
    if (!with_data) return;
    printf("%s: %s[0] = [", __func__, t->name);
    for (size_t i = 0; i <= DEBUG_POS; i++) {
        printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0));
    }
    printf(" ... ]\n");
}

namespace PCA {

// input params for PCA computations
struct pca_params {
    int n_threads = 1;
    int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used
    int n_iterations = 1000;
    float tolerance = 1e-7;

    // for debugging
    int i_layer = 0;
    int n_layers = 0;
};

// result from each iteration
struct pca_result {
    struct ggml_tensor * calculated_square = NULL;
    std::vector<struct ggml_tensor *> eigenvectors;
    std::vector<float> distances;
};

struct pca_model {
    ggml_backend_t backend = NULL;
    ggml_backend_buffer_t buffer;
    struct ggml_context * ctx;      // context to compute graph on target device
    struct ggml_context * ctx_host; // host context to store results

    // tensors on target device
    struct ggml_tensor * dev_input;
    struct ggml_tensor * dev_square;
    struct ggml_tensor * dev_eigenvector;

    pca_model(struct ggml_tensor * t_input) {
#ifdef GGML_USE_CUDA
        fprintf(stderr, "%s: using CUDA backend\n", __func__);
        backend = ggml_backend_cuda_init(0); // init device 0
        if (!backend) {
            fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
        }
#endif

// TODO: enable Metal support when support for GGML_OP_SQRT is added
// #ifdef GGML_USE_METAL
//         fprintf(stderr, "%s: using Metal backend\n", __func__);
//         backend = ggml_backend_metal_init();
//         if (!backend) {
//             fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
//         }
// #endif

        // if there aren't GPU Backends fallback to CPU backend
        if (!backend) {
            backend = ggml_backend_cpu_init();
        }

        const int num_tensors = 4;
        struct ggml_init_params params {
            /*.mem_size   =*/ ggml_tensor_overhead() * num_tensors,
            /*.mem_buffer =*/ NULL,
            /*.no_alloc   =*/ true,
        };
        ctx = ggml_init(params);

        auto n_samples = t_input->ne[0];
        auto n_embd    = t_input->ne[1];

        dev_input       = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd);
        dev_square      = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,    n_embd);
        dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

        ggml_set_name(dev_input,       "dev_input");
        ggml_set_name(dev_square,      "dev_square");
        ggml_set_name(dev_eigenvector, "dev_eigenvector");
        buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
        ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input));

        // initialize eigenvector to random normalized vector
        {
            std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0);
            std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
            std::uniform_real_distribution<float> distribution(0.0, 1.0);
            float sum_sqr = 0.0; // for normalizing random_vec
            for (size_t i = 0; i < random_vec.size(); ++i) {
                float f = distribution(generator);
                sum_sqr += f * f;
                random_vec[i] = f;
            }
            // normalize it
            float random_vec_norm = std::sqrt(sum_sqr);
            for (size_t i = 0; i < random_vec.size(); ++i) {
                random_vec[i] /= random_vec_norm;
            }
            ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector));
        }
    }

    ~pca_model() {
        ggml_free(ctx);
        ggml_backend_buffer_free(buffer);
        ggml_backend_free(backend);
    }
};

static struct ggml_cgraph * build_graph_piter(
        const struct pca_params & params,
        const pca_model & model,
        bool calc_square = false) {
    GGML_ASSERT(params.n_batch > 0);
    // TODO: buf_size must be able to scale with params.n_batch
    static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
    static std::vector<uint8_t> buf(buf_size);

    struct ggml_init_params params0 = {
        /*.mem_size   =*/ buf_size,
        /*.mem_buffer =*/ buf.data(),
        /*.no_alloc   =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
    };
    // create a temporally context to build the graph
    struct ggml_context * ctx0 = ggml_init(params0);
    struct ggml_cgraph * gf = ggml_new_graph(ctx0);

    // turn v_diff_original into square matrix if needed
    struct ggml_tensor * tmp_square;
    if (calc_square) {
        tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input);
        ggml_set_name(tmp_square, "tmp_square");
    }

    struct ggml_tensor * b_tensor;
    struct ggml_tensor * distance;
    struct ggml_tensor * old_eigen    = model.dev_eigenvector;
    struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square;

    for (int i = 0; i < params.n_batch; ++i) {
        // b_tensor = square * eigenvector^T
        b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen);
        ggml_set_name(b_tensor, "b_tensor");

        // normalize
        b_tensor = ggml_div_inplace(ctx0,
            b_tensor,
            ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor)))
        );
        ggml_format_name(b_tensor, "b_tensor_norm_%d", i);

        // calculate distance(new eigenvector - old eigenvector)
        // we don't use ggml_sub because it may not be implemented on GPU backend
        struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1));
        distance = ggml_sqrt_inplace(ctx0,
            ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old)));
        ggml_format_name(distance, "distance_%d", i);

        old_eigen = b_tensor;

        // build operations nodes
        ggml_build_forward_expand(gf, distance);
    }

    // delete the temporally context used to build the graph
    ggml_free(ctx0);
    return gf;
}

static ggml_status compute_piter(
        const struct pca_params & params,
        const pca_model & model,
        struct ggml_cgraph * gf,
        ggml_gallocr_t allocr,
        struct pca_result & result) {
    // allocate tensors
    ggml_gallocr_alloc_graph(allocr, gf);

    if (ggml_backend_is_cpu(model.backend)) {
        ggml_backend_cpu_set_n_threads(model.backend, params.n_threads);
    }

    ggml_status res = ggml_backend_graph_compute(model.backend, gf);
    if (res == GGML_STATUS_SUCCESS) {
        auto extract_i = [](std::string prefix, std::string str) -> int {
            int i = -1;
            if (str.rfind(prefix, 0) == 0) {
                sscanf(str.c_str(), (prefix + "%d").c_str(), &i);
            }
            return i;
        };
        result.calculated_square = NULL;
        result.eigenvectors.clear();
        result.distances.clear();
        result.eigenvectors.resize(params.n_batch);
        result.distances.resize(params.n_batch);
        // get output nodes
        for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
            auto node = ggml_graph_node(gf, i);
            int iter = -1;
            // find b_tensor (without copying data from device)
            if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
                result.eigenvectors[iter] = node;
            }
            // find distances, then copy data from device
            if ((iter = extract_i("distance_", node->name)) > -1) {
                float d;
                ggml_backend_tensor_get(node, &d, 0, sizeof(float));
                result.distances[iter] = d;
                // std::cout << node->name << " = " << d << "\n";
            }
            // find tmp_square if it exists (without copying data from device)
            if (std::string(node->name) == "tmp_square") {
                result.calculated_square = node;
            }
        }
    }
    return res;
}

static void power_iteration(
        const struct pca_params & params,
        struct ggml_tensor * input, // shape of input: [n_samples, n_embd]
        struct ggml_tensor * output) {
    //printf("in power iteration\n");
    struct pca_model model(input);

    ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
    struct pca_result result;
    struct ggml_tensor * last_eigenvector = NULL;

    int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations
    for (int iter = 0; iter < n_iters; ++iter) {
        bool calc_square = (iter == 0); // only need to calculate square for first iteration
        struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square);
        // ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot");
        compute_piter(params, model, gf, allocr, result);

        for (size_t k = 0; k < result.distances.size(); ++k) {
            last_eigenvector = result.eigenvectors[k];
            if (result.distances[k] < params.tolerance) {
                break; // done
            }
        }

        if (calc_square) {
            // copy and store the square matrix if needed
            GGML_ASSERT(result.calculated_square != NULL);
            ggml_backend_tensor_copy(result.calculated_square, model.dev_square);
        }

        {
            // copy last eigen vector and store as input for next iteration
            GGML_ASSERT(last_eigenvector != NULL);
            ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector);
        }

        printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n",
            __func__, params.i_layer+1, params.n_layers, iter+1, n_iters, params.n_batch);
    }

    // get output tensor
    GGML_ASSERT(last_eigenvector);
    ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector));
    //print_debug_tensor(output);
    ggml_gallocr_free(allocr);

    // TODO @ngxson : The output vector is randomly inverted
    // Solution: https://github.com/ggerganov/llama.cpp/pull/8069#issuecomment-2185328171
}

static void run_pca(
        struct pca_params & params,
        const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd]
        const std::vector<struct ggml_tensor *> & v_output) {
    printf("%s: Running PCA...\n", __func__);
    for (size_t il = 0; il < v_input.size(); ++il) {

        // prepare output vector
        struct ggml_tensor * ctrl_out = v_output[il];
        ggml_format_name(ctrl_out, "direction.%ld", il+1);

        // run power_iteration
        params.i_layer = il;
        params.n_layers = v_input.size();
        power_iteration(params, v_input[il], ctrl_out);
        printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
    }
}

}