File size: 22,903 Bytes
b664585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <sstream>
#include <thread>
#include <mutex>
#include <vector>
#include <fstream>
#include <unordered_map>
#include <algorithm>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static void print_usage(int, char ** argv) {
LOG("\nexample usage:\n");
LOG("\n %s \\\n"
" -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] \\\n"
" [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n"
" [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]\n" , argv[0]);
LOG("\n");
}
struct Stats {
std::vector<float> values;
std::vector<int> counts;
int ncall = 0;
};
class IMatrixCollector {
public:
IMatrixCollector() = default;
void set_params(common_params params) { m_params = std::move(params); }
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
void save_imatrix(int ncall = -1) const;
bool load_imatrix(const char * file_name);
private:
std::unordered_map<std::string, Stats> m_stats;
common_params m_params;
std::mutex m_mutex;
int m_last_call = 0;
std::vector<float> m_src1_data;
std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
};
// remove any prefix and suffixes from the name
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
static std::string filter_tensor_name(const char * name) {
std::string wname;
const char * p = strchr(name, '#');
if (p != NULL) {
p = p + 1;
const char * q = strchr(p, '#');
if (q != NULL) {
wname = std::string(p, q - p);
} else {
wname = p;
}
} else {
wname = name;
}
return wname;
}
bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
GGML_UNUSED(user_data);
const struct ggml_tensor * src0 = t->src[0];
const struct ggml_tensor * src1 = t->src[1];
std::string wname = filter_tensor_name(src0->name);
// when ask is true, the scheduler wants to know if we are interested in data from this tensor
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
if (ask) {
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
if (t->op != GGML_OP_MUL_MAT) return false;
// why are small batches ignored (<16 tokens)?
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false;
return true;
}
std::lock_guard<std::mutex> lock(m_mutex);
// copy the data from the GPU memory if needed
const bool is_host = ggml_backend_buffer_is_host(src1->buffer);
if (!is_host) {
m_src1_data.resize(ggml_nelements(src1));
ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1));
}
const float * data = is_host ? (const float *) src1->data : m_src1_data.data();
// this has been adapted to the new format of storing merged experts in a single 3d tensor
// ref: https://github.com/ggerganov/llama.cpp/pull/6387
if (t->op == GGML_OP_MUL_MAT_ID) {
// ids -> [n_experts_used, n_tokens]
// src1 -> [cols, n_expert_used, n_tokens]
const ggml_tensor * ids = t->src[2];
const int n_as = src0->ne[2];
const int n_ids = ids->ne[0];
// the top-k selected expert ids are stored in the ids tensor
// for simplicity, always copy ids to host, because it is small
// take into account that ids is not contiguous!
GGML_ASSERT(ids->ne[1] == src1->ne[2]);
m_ids.resize(ggml_nbytes(ids));
ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
auto & e = m_stats[wname];
++e.ncall;
if (e.values.empty()) {
e.values.resize(src1->ne[0]*n_as, 0);
e.counts.resize(src1->ne[0]*n_as, 0);
}
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
exit(1); //GGML_ABORT("fatal error");
}
LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
// loop over all possible experts, regardless if they are used or not in the batch
for (int ex = 0; ex < n_as; ++ex) {
size_t e_start = ex*src1->ne[0];
for (int idx = 0; idx < n_ids; ++idx) {
for (int row = 0; row < (int)src1->ne[2]; ++row) {
const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
if (excur != ex) continue;
const int64_t i11 = idx % src1->ne[1];
const int64_t i12 = row;
const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);
for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[e_start + j] += x[j]*x[j];
e.counts[e_start + j]++;
if (!std::isfinite(e.values[e_start + j])) {
LOG("\n");
LOG_ERR("%f detected in %s\n", e.values[e_start + j], wname.c_str());
exit(1);
}
}
}
}
if (e.ncall > m_last_call) {
m_last_call = e.ncall;
if (m_last_call % m_params.n_out_freq == 0) {
save_imatrix();
}
if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
save_imatrix(m_last_call);
}
}
}
} else {
auto & e = m_stats[wname];
if (e.values.empty()) {
e.values.resize(src1->ne[0], 0);
e.counts.resize(src1->ne[0], 0);
}
else if (e.values.size() != (size_t)src1->ne[0]) {
LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
exit(1); //GGML_ABORT("fatal error");
}
++e.ncall;
LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
for (int row = 0; row < (int)src1->ne[1]; ++row) {
const float * x = data + row * src1->ne[0];
for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[j] += x[j]*x[j];
e.counts[j]++;
if (!std::isfinite(e.values[j])) {
LOG_ERR("%f detected in %s\n", e.values[j], wname.c_str());
exit(1);
}
}
}
if (e.ncall > m_last_call) {
m_last_call = e.ncall;
if (m_last_call % m_params.n_out_freq == 0) {
save_imatrix();
}
if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
save_imatrix(m_last_call);
}
}
}
return true;
}
void IMatrixCollector::save_imatrix(int ncall) const {
auto fname = m_params.out_file;
if (fname.empty()) {
fname = "imatrix.dat";
}
if (ncall > 0) {
fname += ".at_";
fname += std::to_string(ncall);
}
// avoid writing imatrix entries that do not have full data
// this can happen with MoE models where some of the experts end up not being exercised by the provided training data
int n_entries = 0;
std::vector<std::string> to_store;
bool is_first = true; // for printing
for (const auto & kv : m_stats) {
const int n_all = kv.second.counts.size();
if (n_all == 0) {
continue;
}
int n_zeros = 0;
for (const int c : kv.second.counts) {
if (c == 0) {
n_zeros++;
}
}
if (n_zeros != 0 && is_first) {
LOG_INF("\n");
is_first = false;
}
if (n_zeros == n_all) {
LOG_WRN("%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str());
continue;
}
if (n_zeros > 0) {
LOG_WRN("%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
continue;
}
n_entries++;
to_store.push_back(kv.first);
}
if (to_store.size() < m_stats.size()) {
LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
}
std::ofstream out(fname, std::ios::binary);
out.write((const char *) &n_entries, sizeof(n_entries));
for (const auto & name : to_store) {
const auto & stat = m_stats.at(name);
int len = name.size();
out.write((const char *) &len, sizeof(len));
out.write(name.c_str(), len);
out.write((const char *) &stat.ncall, sizeof(stat.ncall));
int nval = stat.values.size();
out.write((const char *) &nval, sizeof(nval));
if (nval > 0) {
std::vector<float> tmp(nval);
for (int i = 0; i < nval; i++) {
tmp[i] = (stat.values[i] / static_cast<float>(stat.counts[i])) * static_cast<float>(stat.ncall);
}
out.write((const char*)tmp.data(), nval*sizeof(float));
}
}
// Write the number of call the matrix was computed with
out.write((const char *) &m_last_call, sizeof(m_last_call));
// Write the input filename at the end of the file to later on specify it in quantize
{
int len = m_params.prompt_file.size();
out.write((const char *) &len, sizeof(len));
out.write(m_params.prompt_file.c_str(), len);
}
LOGV(1, "\n");
LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str());
}
bool IMatrixCollector::load_imatrix(const char * fname) {
std::ifstream in(fname, std::ios::binary);
if (!in) {
LOG_ERR("%s: failed to open %s\n",__func__, fname);
return false;
}
int n_entries;
in.read((char*)&n_entries, sizeof(n_entries));
if (in.fail() || n_entries < 1) {
LOG_ERR("%s: no data in file %s\n", __func__, fname);
return false;
}
for (int i = 0; i < n_entries; ++i) {
int len; in.read((char *)&len, sizeof(len));
std::vector<char> name_as_vec(len+1);
in.read((char *)name_as_vec.data(), len);
if (in.fail()) {
LOG_ERR("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname);
return false;
}
name_as_vec[len] = 0;
std::string name{name_as_vec.data()};
auto & e = m_stats[std::move(name)];
int ncall;
in.read((char*)&ncall, sizeof(ncall));
int nval;
in.read((char *)&nval, sizeof(nval));
if (in.fail() || nval < 1) {
LOG_ERR("%s: failed reading number of values for entry %d\n",__func__,i);
m_stats = {};
return false;
}
if (e.values.empty()) {
e.values.resize(nval, 0);
e.counts.resize(nval, 0);
}
std::vector<float> tmp(nval);
in.read((char*)tmp.data(), nval*sizeof(float));
if (in.fail()) {
LOG_ERR("%s: failed reading data for entry %d\n",__func__,i);
m_stats = {};
return false;
}
// Recreate the state as expected by save_imatrix(), and corerct for weighted sum.
for (int i = 0; i < nval; i++) {
e.values[i] += tmp[i];
e.counts[i] += ncall;
}
e.ncall += ncall;
}
return true;
}
static IMatrixCollector g_collector;
static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
return g_collector.collect_imatrix(t, ask, user_data);
}
struct results_log_softmax {
double log_softmax;
float logit;
float prob;
};
static std::vector<float> softmax(const std::vector<float> & logits) {
std::vector<float> probs(logits.size());
float max_logit = logits[0];
for (float v : logits) {
max_logit = std::max(max_logit, v);
}
double sum_exp = 0.0;
for (size_t i = 0; i < logits.size(); i++) {
// Subtract the maximum logit value from the current logit value for numerical stability
const float logit = logits[i] - max_logit;
const float exp_logit = expf(logit);
sum_exp += exp_logit;
probs[i] = exp_logit;
}
for (size_t i = 0; i < probs.size(); i++) {
probs[i] /= sum_exp;
}
return probs;
}
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
float max_logit = logits[0];
for (int i = 1; i < n_vocab; ++i) {
max_logit = std::max(max_logit, logits[i]);
}
double sum_exp = 0.0;
for (int i = 0; i < n_vocab; ++i) {
sum_exp += expf(logits[i] - max_logit);
}
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
}
static void process_logits(
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
double & nll, double & nll2, float * logit_history, float * prob_history) {
std::mutex mutex;
int counter = 0;
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
double local_nll = 0;
double local_nll2 = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int i = counter++;
if (i >= n_token) {
nll += local_nll; nll2 += local_nll2;
break;
}
lock.unlock();
const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
const double v = -results.log_softmax;
local_nll += v;
local_nll2 += v*v;
logit_history[i] = results.logit;
prob_history[i] = results.prob;
}
};
for (auto & w : workers) {
w = std::thread(compute);
}
compute();
for (auto & w : workers) {
w.join();
}
}
static bool compute_imatrix(llama_context * ctx, const common_params & params) {
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
const int n_ctx = llama_n_ctx(ctx);
auto tim1 = std::chrono::high_resolution_clock::now();
LOG_INF("%s: tokenizing the input ..\n", __func__);
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
auto tim2 = std::chrono::high_resolution_clock::now();
LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
if (params.i_chunk > 0) {
if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) {
LOG_ERR("%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk);
return false;
}
LOG_INF("%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx);
tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx);
}
if (int(tokens.size()) < 2*n_ctx) {
LOG_ERR("%s: you need at least %d tokens for a context of %d tokens\n", __func__, 2*n_ctx, n_ctx);
LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n", __func__, tokens.size());
return false;
}
std::vector<float> logit_history;
std::vector<float> prob_history;
if (params.compute_ppl) {
logit_history.resize(tokens.size());
prob_history.resize(tokens.size());
}
const int n_chunk_max = tokens.size() / n_ctx;
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_batch = params.n_batch;
int count = 0;
double nll = 0.0;
double nll2 = 0.0;
LOG_INF("%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
std::vector<float> logits;
if (params.compute_ppl && num_batches > 1) {
logits.reserve((size_t)n_ctx * n_vocab);
}
for (int i = 0; i < n_chunk; ++i) {
const int start = i * n_ctx;
const int end = start + n_ctx;
std::vector<float> logits;
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
// save original token and restore it after eval
const auto token_org = tokens[batch_start];
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
}
common_batch_clear(batch);
for (int i = 0; i < batch_size; i++) {
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
}
if (llama_decode(ctx, batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
llama_batch_free(batch);
return false;
}
// restore the original token in case it was set to BOS
tokens[batch_start] = token_org;
if (params.compute_ppl && num_batches > 1) {
const auto * batch_logits = llama_get_logits(ctx);
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
}
}
llama_batch_free(batch);
const auto t_end = std::chrono::high_resolution_clock::now();
if (i == 0) {
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
int total_seconds = (int)(t_total * n_chunk);
if (total_seconds >= 60*60) {
LOG("%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60);
}
LOG("%.2f minutes\n", total_seconds / 60.0);
}
if (params.compute_ppl) {
const int first = n_ctx/2;
const auto * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
count += n_ctx - first - 1;
LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
fflush(stdout);
logits.clear();
}
}
LOG("\n");
if (params.compute_ppl) {
nll2 /= count;
nll /= count;
const double ppl = exp(nll);
nll2 -= nll * nll;
if (nll2 > 0) {
nll2 = sqrt(nll2/(count-1));
LOG("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
} else {
LOG("Unexpected negative standard deviation of log(prob)\n");
}
}
return true;
}
int main(int argc, char ** argv) {
common_params params;
params.n_ctx = 512;
params.logits_all = true;
params.escape = false;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
return 1;
}
common_init();
params.n_batch = std::min(params.n_batch, params.n_ctx);
g_collector.set_params(params);
for (const auto & in_file : params.in_files) {
LOG_INF("%s : loading imatrix from '%s'\n", __func__, in_file.c_str());
if (!g_collector.load_imatrix(in_file.c_str())) {
LOG_ERR("%s : failed to load %s\n", __func__, in_file.c_str());
return 1;
}
}
if (params.in_files.size() > 1) {
LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
g_collector.save_imatrix();
}
llama_backend_init();
llama_numa_init(params.numa);
// pass the callback to the backend scheduler
// it will be executed for each node during the graph computation
params.cb_eval = ik_collect_imatrix;
params.cb_eval_user_data = NULL;
params.warmup = false;
// init
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
if (model == nullptr || ctx == nullptr) {
LOG_ERR("%s : failed to init\n", __func__);
return 1;
}
const int n_ctx_train = llama_n_ctx_train(model);
if (params.n_ctx > n_ctx_train) {
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, params.n_ctx);
}
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
if (params.prompt.empty()) {
if (params.in_files.empty()) {
LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n");
return 1;
}
LOG_INF("No prompt provided; combining precomputed matrices only.\n");
} else {
if (!compute_imatrix(ctx, params)) {
return 1;
}
}
g_collector.save_imatrix();
LOG("\n");
llama_perf_context_print(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}
|