File size: 22,903 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"

#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <sstream>
#include <thread>
#include <mutex>
#include <vector>
#include <fstream>
#include <unordered_map>
#include <algorithm>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

static void print_usage(int, char ** argv) {
    LOG("\nexample usage:\n");
    LOG("\n    %s \\\n"
            "       -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] \\\n"
            "       [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n"
            "       [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]\n" , argv[0]);
    LOG("\n");
}

struct Stats {
    std::vector<float> values;
    std::vector<int> counts;
    int ncall = 0;
};

class IMatrixCollector {
public:
    IMatrixCollector() = default;
    void set_params(common_params params) { m_params = std::move(params); }
    bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
    void save_imatrix(int ncall = -1) const;
    bool load_imatrix(const char * file_name);
private:
    std::unordered_map<std::string, Stats> m_stats;
    common_params                          m_params;
    std::mutex                             m_mutex;
    int                                    m_last_call = 0;
    std::vector<float>                     m_src1_data;
    std::vector<char>                      m_ids; // the expert ids from ggml_mul_mat_id
};

// remove any prefix and suffixes from the name
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
static std::string filter_tensor_name(const char * name) {
    std::string wname;
    const char * p = strchr(name, '#');
    if (p != NULL) {
        p = p + 1;
        const char * q = strchr(p, '#');
        if (q != NULL) {
            wname = std::string(p, q - p);
        } else {
            wname = p;
        }
    } else {
        wname = name;
    }
    return wname;
}

bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
    GGML_UNUSED(user_data);

    const struct ggml_tensor * src0 = t->src[0];
    const struct ggml_tensor * src1 = t->src[1];
    std::string wname = filter_tensor_name(src0->name);

    // when ask is true, the scheduler wants to know if we are interested in data from this tensor
    // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
    if (ask) {
        if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
        if (t->op != GGML_OP_MUL_MAT) return false;
        // why are small batches ignored (<16 tokens)?
        if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
        if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false;
        return true;
    }

    std::lock_guard<std::mutex> lock(m_mutex);

    // copy the data from the GPU memory if needed
    const bool is_host = ggml_backend_buffer_is_host(src1->buffer);

    if (!is_host) {
        m_src1_data.resize(ggml_nelements(src1));
        ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1));
    }

    const float * data = is_host ? (const float *) src1->data : m_src1_data.data();

    // this has been adapted to the new format of storing merged experts in a single 3d tensor
    // ref: https://github.com/ggerganov/llama.cpp/pull/6387
    if (t->op == GGML_OP_MUL_MAT_ID) {
        //   ids  -> [n_experts_used, n_tokens]
        //   src1 -> [cols, n_expert_used, n_tokens]
        const ggml_tensor * ids = t->src[2];
        const int n_as = src0->ne[2];
        const int n_ids = ids->ne[0];

        // the top-k selected expert ids are stored in the ids tensor
        // for simplicity, always copy ids to host, because it is small
        // take into account that ids is not contiguous!

        GGML_ASSERT(ids->ne[1] == src1->ne[2]);

        m_ids.resize(ggml_nbytes(ids));
        ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));

        auto & e = m_stats[wname];

        ++e.ncall;

        if (e.values.empty()) {
            e.values.resize(src1->ne[0]*n_as, 0);
            e.counts.resize(src1->ne[0]*n_as, 0);
        }
        else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
            LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
            exit(1); //GGML_ABORT("fatal error");
        }
        LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
        // loop over all possible experts, regardless if they are used or not in the batch
        for (int ex = 0; ex < n_as; ++ex) {
            size_t e_start = ex*src1->ne[0];

            for (int idx = 0; idx < n_ids; ++idx) {
                for (int row = 0; row < (int)src1->ne[2]; ++row) {
                    const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);

                    GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check

                    if (excur != ex) continue;

                    const int64_t i11 = idx % src1->ne[1];
                    const int64_t i12 = row;
                    const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);

                    for (int j = 0; j < (int)src1->ne[0]; ++j) {
                        e.values[e_start + j] += x[j]*x[j];
                        e.counts[e_start + j]++;
                        if (!std::isfinite(e.values[e_start + j])) {
                            LOG("\n");
                            LOG_ERR("%f detected in %s\n", e.values[e_start + j], wname.c_str());
                            exit(1);
                        }
                    }
                }
            }
            if (e.ncall > m_last_call) {
                m_last_call = e.ncall;
                if (m_last_call % m_params.n_out_freq == 0) {
                    save_imatrix();
                }
                if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
                    save_imatrix(m_last_call);
                }
            }
        }
    } else {
        auto & e = m_stats[wname];
        if (e.values.empty()) {
            e.values.resize(src1->ne[0], 0);
            e.counts.resize(src1->ne[0], 0);
        }
        else if (e.values.size() != (size_t)src1->ne[0]) {
            LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
            exit(1); //GGML_ABORT("fatal error");
        }
        ++e.ncall;
        LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
        for (int row = 0; row < (int)src1->ne[1]; ++row) {
            const float * x = data + row * src1->ne[0];
            for (int j = 0; j < (int)src1->ne[0]; ++j) {
                e.values[j] += x[j]*x[j];
                e.counts[j]++;
                if (!std::isfinite(e.values[j])) {
                    LOG_ERR("%f detected in %s\n", e.values[j], wname.c_str());
                    exit(1);
                }
            }
        }
        if (e.ncall > m_last_call) {
            m_last_call = e.ncall;
            if (m_last_call % m_params.n_out_freq == 0) {
                save_imatrix();
            }
            if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
                save_imatrix(m_last_call);
            }
        }
    }

    return true;
}

void IMatrixCollector::save_imatrix(int ncall) const {
    auto fname = m_params.out_file;
    if (fname.empty()) {
        fname = "imatrix.dat";
    }

    if (ncall > 0) {
        fname += ".at_";
        fname += std::to_string(ncall);
    }

    // avoid writing imatrix entries that do not have full data
    // this can happen with MoE models where some of the experts end up not being exercised by the provided training data

    int n_entries = 0;
    std::vector<std::string> to_store;

    bool is_first = true; // for printing
    for (const auto & kv : m_stats) {
        const int n_all = kv.second.counts.size();

        if (n_all == 0) {
            continue;
        }

        int n_zeros = 0;
        for (const int c : kv.second.counts) {
            if (c == 0) {
                n_zeros++;
            }
        }

        if (n_zeros != 0 && is_first) {
            LOG_INF("\n");
            is_first = false;
        }

        if (n_zeros == n_all) {
            LOG_WRN("%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str());
            continue;
        }

        if (n_zeros > 0) {
            LOG_WRN("%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
            continue;
        }

        n_entries++;
        to_store.push_back(kv.first);
    }

    if (to_store.size() < m_stats.size()) {
        LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
    }

    std::ofstream out(fname, std::ios::binary);
    out.write((const char *) &n_entries, sizeof(n_entries));
    for (const auto & name : to_store) {
        const auto & stat = m_stats.at(name);
        int len = name.size();
        out.write((const char *) &len, sizeof(len));
        out.write(name.c_str(), len);
        out.write((const char *) &stat.ncall, sizeof(stat.ncall));
        int nval = stat.values.size();
        out.write((const char *) &nval, sizeof(nval));
        if (nval > 0) {
            std::vector<float> tmp(nval);
            for (int i = 0; i < nval; i++) {
                tmp[i] = (stat.values[i] / static_cast<float>(stat.counts[i])) * static_cast<float>(stat.ncall);
            }
            out.write((const char*)tmp.data(), nval*sizeof(float));
        }
    }

    // Write the number of call the matrix was computed with
    out.write((const char *) &m_last_call, sizeof(m_last_call));

    // Write the input filename at the end of the file to later on specify it in quantize
    {
        int len = m_params.prompt_file.size();
        out.write((const char *) &len, sizeof(len));
        out.write(m_params.prompt_file.c_str(), len);
    }

    LOGV(1, "\n");
    LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str());
}

bool IMatrixCollector::load_imatrix(const char * fname) {
    std::ifstream in(fname, std::ios::binary);
    if (!in) {
        LOG_ERR("%s: failed to open %s\n",__func__, fname);
        return false;
    }
    int n_entries;
    in.read((char*)&n_entries, sizeof(n_entries));
    if (in.fail() || n_entries < 1) {
        LOG_ERR("%s: no data in file %s\n", __func__, fname);
        return false;
    }
    for (int i = 0; i < n_entries; ++i) {
        int len; in.read((char *)&len, sizeof(len));
        std::vector<char> name_as_vec(len+1);
        in.read((char *)name_as_vec.data(), len);
        if (in.fail()) {
            LOG_ERR("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname);
            return false;
        }
        name_as_vec[len] = 0;
        std::string name{name_as_vec.data()};
        auto & e = m_stats[std::move(name)];
        int ncall;
        in.read((char*)&ncall, sizeof(ncall));
        int nval;
        in.read((char *)&nval, sizeof(nval));
        if (in.fail() || nval < 1) {
            LOG_ERR("%s: failed reading number of values for entry %d\n",__func__,i);
            m_stats = {};
            return false;
        }

        if (e.values.empty()) {
            e.values.resize(nval, 0);
            e.counts.resize(nval, 0);
        }

        std::vector<float> tmp(nval);
        in.read((char*)tmp.data(), nval*sizeof(float));
        if (in.fail()) {
            LOG_ERR("%s: failed reading data for entry %d\n",__func__,i);
            m_stats = {};
            return false;
        }

        // Recreate the state as expected by save_imatrix(), and corerct for weighted sum.
        for (int i = 0; i < nval; i++) {
            e.values[i] += tmp[i];
            e.counts[i] += ncall;
        }
        e.ncall += ncall;

    }
    return true;
}

static IMatrixCollector g_collector;

static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
    return g_collector.collect_imatrix(t, ask, user_data);
}


struct results_log_softmax {
    double log_softmax;
    float  logit;
    float  prob;
};

static std::vector<float> softmax(const std::vector<float> & logits) {
    std::vector<float> probs(logits.size());
    float max_logit = logits[0];
    for (float v : logits) {
        max_logit = std::max(max_logit, v);
    }
    double sum_exp = 0.0;
    for (size_t i = 0; i < logits.size(); i++) {
        // Subtract the maximum logit value from the current logit value for numerical stability
        const float logit = logits[i] - max_logit;
        const float exp_logit = expf(logit);
        sum_exp += exp_logit;
        probs[i] = exp_logit;
    }
    for (size_t i = 0; i < probs.size(); i++) {
        probs[i] /= sum_exp;
    }
    return probs;
}

static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
    float max_logit = logits[0];
    for (int i = 1; i < n_vocab; ++i) {
        max_logit = std::max(max_logit, logits[i]);
    }
    double sum_exp = 0.0;
    for (int i = 0; i < n_vocab; ++i) {
        sum_exp += expf(logits[i] - max_logit);
    }
    return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
}

static void process_logits(
    int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
    double & nll, double & nll2, float * logit_history, float * prob_history) {
    std::mutex mutex;
    int counter = 0;
    auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
        double local_nll  = 0;
        double local_nll2 = 0;
        while (true) {
            std::unique_lock<std::mutex> lock(mutex);
            int i = counter++;
            if (i >= n_token) {
                nll += local_nll; nll2 += local_nll2;
                break;
            }
            lock.unlock();
            const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
            const double v = -results.log_softmax;
            local_nll += v;
            local_nll2 += v*v;

            logit_history[i] = results.logit;
            prob_history[i]  = results.prob;
        }
    };
    for (auto & w : workers) {
        w = std::thread(compute);
    }
    compute();
    for (auto & w : workers) {
        w.join();
    }
}

static bool compute_imatrix(llama_context * ctx, const common_params & params) {
    const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
    GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
    const int n_ctx = llama_n_ctx(ctx);

    auto tim1 = std::chrono::high_resolution_clock::now();
    LOG_INF("%s: tokenizing the input ..\n", __func__);

    std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);

    auto tim2 = std::chrono::high_resolution_clock::now();
    LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());

    if (params.i_chunk > 0) {
        if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) {
            LOG_ERR("%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk);
            return false;
        }
        LOG_INF("%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx);
        tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx);
    }

    if (int(tokens.size()) < 2*n_ctx) {
        LOG_ERR("%s: you need at least %d tokens for a context of %d tokens\n", __func__, 2*n_ctx, n_ctx);
        LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n", __func__, tokens.size());
        return false;
    }

    std::vector<float> logit_history;
    std::vector<float> prob_history;

    if (params.compute_ppl) {
        logit_history.resize(tokens.size());
        prob_history.resize(tokens.size());
    }

    const int n_chunk_max = tokens.size() / n_ctx;

    const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));
    const int n_batch = params.n_batch;

    int count = 0;
    double nll = 0.0;
    double nll2 = 0.0;

    LOG_INF("%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);

    std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);

    const int num_batches = (n_ctx + n_batch - 1) / n_batch;

    std::vector<float> logits;
    if (params.compute_ppl && num_batches > 1) {
        logits.reserve((size_t)n_ctx * n_vocab);
    }

    for (int i = 0; i < n_chunk; ++i) {
        const int start =     i * n_ctx;
        const int end   = start + n_ctx;

        std::vector<float> logits;

        const auto t_start = std::chrono::high_resolution_clock::now();

        // clear the KV cache
        llama_kv_cache_clear(ctx);

        llama_batch batch = llama_batch_init(n_batch, 0, 1);

        for (int j = 0; j < num_batches; ++j) {
            const int batch_start = start + j * n_batch;
            const int batch_size  = std::min(end - batch_start, n_batch);

            // save original token and restore it after eval
            const auto token_org = tokens[batch_start];

            // add BOS token for the first batch of each chunk
            if (add_bos && j == 0) {
                tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
            }

            common_batch_clear(batch);
            for (int i = 0; i < batch_size; i++) {
                common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
            }

            if (llama_decode(ctx, batch)) {
                LOG_ERR("%s : failed to eval\n", __func__);
                llama_batch_free(batch);
                return false;
            }

            // restore the original token in case it was set to BOS
            tokens[batch_start] = token_org;

            if (params.compute_ppl && num_batches > 1) {
                const auto * batch_logits = llama_get_logits(ctx);
                logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
            }
        }

        llama_batch_free(batch);

        const auto t_end = std::chrono::high_resolution_clock::now();

        if (i == 0) {
            const float t_total = std::chrono::duration<float>(t_end - t_start).count();
            LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
            int total_seconds = (int)(t_total * n_chunk);
            if (total_seconds >= 60*60) {
                LOG("%d hours ", total_seconds / (60*60));
                total_seconds = total_seconds % (60*60);
            }
            LOG("%.2f minutes\n", total_seconds / 60.0);
        }

        if (params.compute_ppl) {
            const int first = n_ctx/2;
            const auto * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
            process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
                    workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
            count += n_ctx - first - 1;

            LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
            fflush(stdout);

            logits.clear();
        }
    }
    LOG("\n");

    if (params.compute_ppl) {
        nll2 /= count;
        nll /= count;
        const double ppl = exp(nll);
        nll2 -= nll * nll;
        if (nll2 > 0) {
            nll2 = sqrt(nll2/(count-1));
            LOG("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
        } else {
            LOG("Unexpected negative standard deviation of log(prob)\n");
        }
    }

    return true;
}

int main(int argc, char ** argv) {
    common_params params;

    params.n_ctx = 512;
    params.logits_all = true;
    params.escape = false;

    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
        return 1;
    }

    common_init();

    params.n_batch = std::min(params.n_batch, params.n_ctx);

    g_collector.set_params(params);

    for (const auto & in_file : params.in_files) {
        LOG_INF("%s : loading imatrix from '%s'\n", __func__, in_file.c_str());
        if (!g_collector.load_imatrix(in_file.c_str())) {
            LOG_ERR("%s : failed to load %s\n", __func__, in_file.c_str());
            return 1;
        }
    }

    if (params.in_files.size() > 1) {
        LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
        g_collector.save_imatrix();
    }

    llama_backend_init();
    llama_numa_init(params.numa);

    // pass the callback to the backend scheduler
    // it will be executed for each node during the graph computation
    params.cb_eval = ik_collect_imatrix;
    params.cb_eval_user_data = NULL;
    params.warmup = false;

    // init
    common_init_result llama_init = common_init_from_params(params);

    llama_model * model = llama_init.model;
    llama_context * ctx = llama_init.context;
    if (model == nullptr || ctx == nullptr) {
        LOG_ERR("%s : failed to init\n", __func__);
        return 1;
    }

    const int n_ctx_train = llama_n_ctx_train(model);
    if (params.n_ctx > n_ctx_train) {
        LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
                __func__, n_ctx_train, params.n_ctx);
    }

    // print system information
    {
        LOG_INF("\n");
        LOG_INF("%s\n", common_params_get_system_info(params).c_str());
    }

    if (params.prompt.empty()) {
        if (params.in_files.empty()) {
            LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n");
            return 1;
        }
        LOG_INF("No prompt provided; combining precomputed matrices only.\n");
    } else {
        if (!compute_imatrix(ctx, params)) {
            return 1;
        }
    }


    g_collector.save_imatrix();

    LOG("\n");
    llama_perf_context_print(ctx);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    return 0;
}