File size: 8,285 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#include "arg.h"
#include "ggml.h"
#include "common.h"
#include "ngram-cache.h"
#include "sampling.h"
#include "log.h"
#include "llama.h"

#include <cstdint>
#include <cstdio>
#include <fstream>
#include <string>
#include <vector>

int main(int argc, char ** argv){
    common_params params;

    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
        return 1;
    }

    common_init();

    // max. number of additional tokens to draft if match is found
    const int n_draft = params.speculative.n_max;

    const bool dump_kv_cache = params.dump_kv_cache;

    // init llama.cpp
    llama_backend_init();
    llama_numa_init(params.numa);

    // load the model
    common_init_result llama_init = common_init_from_params(params);

    llama_model * model = llama_init.model;
    llama_context * ctx = llama_init.context;

    // tokenize the prompt
    std::vector<llama_token> inp;
    inp = common_tokenize(ctx, params.prompt, true, true);

    common_ngram_cache ngram_cache_context;
    common_ngram_cache ngram_cache_dynamic;
    common_ngram_cache ngram_cache_static;
    int64_t t_draft_flat_us = 0;
    int64_t t_draft_us = 0;

    {
        // Fill up context ngram cache with tokens from user input:
        const int64_t t_start_draft_us = ggml_time_us();
        common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);

        if (!params.lookup_cache_static.empty()) {
            try {
                ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
            } catch (std::ifstream::failure const &) {
                LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
                exit(1);
            }
        }

        if (!params.lookup_cache_dynamic.empty()) {
            try {
                ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
            } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
        }

        t_draft_flat_us += ggml_time_us() - t_start_draft_us;
    }

    const int max_context_size     = llama_n_ctx(ctx);
    const int max_tokens_list_size = max_context_size - 4;

    if ((int) inp.size() > max_tokens_list_size) {
        LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
        return 1;
    }

    LOG("\n\n");

    for (auto id : inp) {
        LOG("%s", common_token_to_piece(ctx, id).c_str());
    }

    fflush(stderr);

    const int n_input = inp.size();

    const auto t_enc_start = ggml_time_us();

    llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1));
    llama_decode(ctx, llama_batch_get_one(&inp.back(),           1));

    const auto t_enc_end = ggml_time_us();

    int n_predict = 0;
    int n_drafted = 0;
    int n_accept  = 0;

    int n_past = inp.size();

    bool has_eos = false;

    struct common_sampler * smpl = common_sampler_init(model, params.sampling);

    std::vector<llama_token> draft;

    llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);

    // debug
    struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);

    const auto t_dec_start = ggml_time_us();

    while (true) {
        // debug
        if (dump_kv_cache) {
            llama_kv_cache_view_update(ctx, &kvc_view);
            common_kv_cache_dump_view_seqs(kvc_view, 40);
        }

        // print current draft sequence
        LOG_DBG("drafted %s\n", string_from(ctx, draft).c_str());

        int i_dft = 0;
        while (true) {
            // sample from the target model
            llama_token id = common_sampler_sample(smpl, ctx, i_dft);

            common_sampler_accept(smpl, id, true);

            const std::string token_str = common_token_to_piece(ctx, id);

            if (!params.use_color) {
                LOG("%s", token_str.c_str());
            }

            if (llama_token_is_eog(model, id)) {
                has_eos = true;
            }

            ++n_predict;

            // check if the target token matches the draft
            if (i_dft < (int) draft.size() && id == draft[i_dft]) {
                LOG_DBG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
                ++n_accept;
                ++n_past;
                ++i_dft;
                inp.push_back(id);
                {
                    // Update context ngram cache with the newly accepted token:
                    const int64_t t_start_draft_us = ggml_time_us();
                    common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
                    t_draft_us += ggml_time_us() - t_start_draft_us;
                }

                if (params.use_color) {
                    // color accepted draft token
                    LOG("\033[34m%s\033[0m", token_str.c_str());
                    fflush(stdout);
                }
                continue;
            }

            if (params.use_color) {
                LOG("%s", token_str.c_str());
            }
            fflush(stdout);


            LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());

            draft.clear();
            draft.push_back(id);
            inp.push_back(id);
            {
                // Update context ngram cache with the newly accepted token:
                const int64_t t_start_draft_us = ggml_time_us();
                common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
                t_draft_us += ggml_time_us() - t_start_draft_us;
            }
            break;
        }

        if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
            break;
        }

        // KV cache management
        // clean the cache of draft tokens that weren't accepted
        llama_kv_cache_seq_rm(ctx, 0, n_past, -1);

        common_batch_clear(batch_tgt);
        common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);

        // Draft already contains a single token sampled from the model:
        GGML_ASSERT(draft.size() == 1);
        GGML_ASSERT(draft[0] == inp.back());
        const int64_t t_start_draft_us = ggml_time_us();

        common_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);

        for (size_t i = 1; i < draft.size(); ++i) {
            common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
        }

        t_draft_us += ggml_time_us() - t_start_draft_us;
        n_drafted += draft.size() - 1;

        llama_decode(ctx, batch_tgt);
        ++n_past;

        draft.erase(draft.begin());
    }

    auto t_dec_end = ggml_time_us();

    // Update dynamic ngram cache with context ngram cache and save it to disk:
    common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
    common_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);

    LOG("\n\n");

    LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
    LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));

    LOG_INF("\n");
    LOG_INF("n_draft      = %d\n", n_draft);
    LOG_INF("n_predict    = %d\n", n_predict);
    LOG_INF("n_drafted    = %d\n", n_drafted);
    LOG_INF("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
    LOG_INF("t_draft      = %.2f ms, %.2f us per token, %.2f tokens per second\n",
            t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
    LOG_INF("n_accept     = %d\n", n_accept);
    LOG_INF("accept       = %.3f%%\n", 100.0f * n_accept / n_drafted);

    LOG_INF("\ntarget:\n\n");
    common_perf_print(ctx, smpl);

    common_sampler_free(smpl);

    llama_batch_free(batch_tgt);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    LOG("\n\n");

    return 0;
}