File size: 19,750 Bytes
b664585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
#include "common.h"
#include "llama.h"
#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <unordered_map>
#include <fstream>
#include <cmath>
struct quant_option {
std::string name;
llama_ftype ftype;
std::string desc;
};
static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", },
{ "IQ2_XXS", LLAMA_FTYPE_MOSTLY_IQ2_XXS, " 2.06 bpw quantization", },
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
{ "TQ1_0", LLAMA_FTYPE_MOSTLY_TQ1_0, " 1.69 bpw ternarization", },
{ "TQ2_0", LLAMA_FTYPE_MOSTLY_TQ2_0, " 2.06 bpw ternarization", },
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
{ "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", },
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", },
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", },
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", },
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", },
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", },
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", },
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", },
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
{ "Q4_0_4_4", LLAMA_FTYPE_MOSTLY_Q4_0_4_4, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "Q4_0_4_8", LLAMA_FTYPE_MOSTLY_Q4_0_4_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "Q4_0_8_8", LLAMA_FTYPE_MOSTLY_Q4_0_8_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
};
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset";
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
static bool striequals(const char * a, const char * b) {
while (*a && *b) {
if (std::tolower(*a) != std::tolower(*b)) {
return false;
}
a++; b++;
}
return *a == *b;
}
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
std::string ftype_str;
for (auto ch : ftype_str_in) {
ftype_str.push_back(std::toupper(ch));
}
for (auto & it : QUANT_OPTIONS) {
if (striequals(it.name.c_str(), ftype_str.c_str())) {
ftype = it.ftype;
ftype_str_out = it.name;
return true;
}
}
try {
int ftype_int = std::stoi(ftype_str);
for (auto & it : QUANT_OPTIONS) {
if (it.ftype == ftype_int) {
ftype = it.ftype;
ftype_str_out = it.name;
return true;
}
}
}
catch (...) {
// stoi failed
}
return false;
}
// usage:
// ./llama-quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
//
[[noreturn]]
static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
printf(" --keep-split: will generate quantized model in the same shards as input\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
printf("\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) {
if (it.name != "COPY") {
printf(" %2d or ", it.ftype);
} else {
printf(" ");
}
printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
}
exit(1);
}
static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
std::ifstream in(imatrix_file.c_str(), std::ios::binary);
if (!in) {
printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
exit(1);
}
int n_entries;
in.read((char *)&n_entries, sizeof(n_entries));
if (in.fail() || n_entries < 1) {
printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
exit(1);
}
for (int i = 0; i < n_entries; ++i) {
int len; in.read((char *)&len, sizeof(len));
std::vector<char> name_as_vec(len+1);
in.read((char *)name_as_vec.data(), len);
if (in.fail()) {
printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
exit(1);
}
name_as_vec[len] = 0;
std::string name{name_as_vec.data()};
auto & e = imatrix_data[name];
int ncall;
in.read((char *)&ncall, sizeof(ncall));
int nval;
in.read((char *)&nval, sizeof(nval));
if (in.fail() || nval < 1) {
printf("%s: failed reading number of values for entry %d\n", __func__, i);
imatrix_data = {};
exit(1);
}
e.resize(nval);
in.read((char *)e.data(), nval*sizeof(float));
if (in.fail()) {
printf("%s: failed reading data for entry %d\n", __func__, i);
imatrix_data = {};
exit(1);
}
if (ncall > 0) {
for (auto& v : e) v /= ncall;
}
if (getenv("LLAMA_TRACE")) {
printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
}
}
// latest imatrix version contains the dataset filename at the end of the file
int m_last_call = 0;
if (in.peek() != EOF) {
in.read((char *)&m_last_call, sizeof(m_last_call));
int dataset_len;
in.read((char *)&dataset_len, sizeof(dataset_len));
std::vector<char> dataset_as_vec(dataset_len);
in.read(dataset_as_vec.data(), dataset_len);
imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
}
printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
return m_last_call;
}
static int prepare_imatrix(const std::string & imatrix_file,
std::string & imatrix_dataset,
const std::vector<std::string> & included_weights,
const std::vector<std::string> & excluded_weights,
std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
int m_last_call = -1;
if (!imatrix_file.empty()) {
m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data);
}
if (imatrix_data.empty()) {
return m_last_call;
}
if (!excluded_weights.empty()) {
for (auto& name : excluded_weights) {
for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
auto pos = it->first.find(name);
if (pos != std::string::npos) it = imatrix_data.erase(it);
else ++it;
}
}
}
if (!included_weights.empty()) {
std::unordered_map<std::string, std::vector<float>> tmp;
for (auto& name : included_weights) {
for (auto& e : imatrix_data) {
auto pos = e.first.find(name);
if (pos != std::string::npos) {
tmp.emplace(std::move(e));
}
}
}
imatrix_data = std::move(tmp);
}
if (!imatrix_data.empty()) {
printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
}
return m_last_call;
}
static ggml_type parse_ggml_type(const char * arg) {
for (int i = 0; i < GGML_TYPE_COUNT; ++i) {
auto type = (ggml_type)i;
const auto * name = ggml_type_name(type);
if (name && striequals(name, arg)) {
return type;
}
}
fprintf(stderr, "%s: invalid ggml_type '%s'\n", __func__, arg);
return GGML_TYPE_COUNT;
}
int main(int argc, char ** argv) {
if (argc < 3) {
usage(argv[0]);
}
llama_model_quantize_params params = llama_model_quantize_default_params();
int arg_idx = 1;
std::string imatrix_file;
std::vector<std::string> included_weights, excluded_weights;
std::vector<llama_model_kv_override> kv_overrides;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
params.quantize_output_tensor = false;
} else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
if (arg_idx < argc-1) {
params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
if (params.output_tensor_type == GGML_TYPE_COUNT) {
usage(argv[0]);
}
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
if (arg_idx < argc-1) {
params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
if (params.token_embedding_type == GGML_TYPE_COUNT) {
usage(argv[0]);
}
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
params.allow_requantize = true;
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
params.pure = true;
} else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
if (arg_idx < argc-1) {
imatrix_file = argv[++arg_idx];
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
if (arg_idx < argc-1) {
included_weights.emplace_back(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
if (arg_idx < argc-1) {
excluded_weights.emplace_back(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--keep-split") == 0) {
params.keep_split = true;
} else {
usage(argv[0]);
}
}
if (argc - arg_idx < 2) {
printf("%s: bad arguments\n", argv[0]);
usage(argv[0]);
}
if (!included_weights.empty() && !excluded_weights.empty()) {
usage(argv[0]);
}
std::string imatrix_dataset;
std::unordered_map<std::string, std::vector<float>> imatrix_data;
int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data);
if (!imatrix_data.empty()) {
params.imatrix = &imatrix_data;
{
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
strncpy(kvo.val_str, imatrix_file.c_str(), 127);
kvo.val_str[127] = '\0';
kv_overrides.emplace_back(std::move(kvo));
}
if (!imatrix_dataset.empty()) {
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
strncpy(kvo.val_str, imatrix_dataset.c_str(), 127);
kvo.val_str[127] = '\0';
kv_overrides.emplace_back(std::move(kvo));
}
{
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.val_i64 = imatrix_data.size();
kv_overrides.emplace_back(std::move(kvo));
}
if (m_last_call > 0) {
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.val_i64 = m_last_call;
kv_overrides.emplace_back(std::move(kvo));
}
}
if (!kv_overrides.empty()) {
kv_overrides.emplace_back();
kv_overrides.back().key[0] = 0;
params.kv_overrides = &kv_overrides;
}
llama_backend_init();
// parse command line arguments
const std::string fname_inp = argv[arg_idx];
arg_idx++;
std::string fname_out;
std::string ftype_str;
std::string suffix = ".gguf";
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
std::string fpath;
const size_t pos = fname_inp.find_last_of("/\\");
if (pos != std::string::npos) {
fpath = fname_inp.substr(0, pos + 1);
}
// export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
fname_out = fpath + "ggml-model-" + ftype_str;
if (!params.keep_split) {
fname_out += suffix;
}
arg_idx++;
if (ftype_str == "COPY") {
params.only_copy = true;
}
} else {
fname_out = argv[arg_idx];
if (params.keep_split && fname_out.find(suffix) != std::string::npos) {
fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
}
arg_idx++;
if (argc <= arg_idx) {
fprintf(stderr, "%s: missing ftype\n", __func__);
return 1;
}
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
return 1;
}
if (ftype_str == "COPY") {
params.only_copy = true;
}
arg_idx++;
}
// parse nthreads
if (argc > arg_idx) {
try {
params.nthread = std::stoi(argv[arg_idx]);
}
catch (const std::exception & e) {
fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
return 1;
}
}
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S ||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) {
fprintf(stderr, "\n==========================================================================================================\n");
fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
fprintf(stderr, "==========================================================================================================\n\n\n");
return 1;
}
print_build_info();
fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
if (params.nthread > 0) {
fprintf(stderr, " using %d threads", params.nthread);
}
fprintf(stderr, "\n");
const int64_t t_main_start_us = llama_time_us();
int64_t t_quantize_us = 0;
// load the model
{
const int64_t t_start_us = llama_time_us();
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) {
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
return 1;
}
t_quantize_us = llama_time_us() - t_start_us;
}
// report timing
{
const int64_t t_main_end_us = llama_time_us();
printf("\n");
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
}
llama_backend_free();
return 0;
}
|