File size: 13,255 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from __future__ import annotations

import argparse
import json
import os
import re
import signal
import socket
import subprocess
import sys
import threading
import time
import traceback
from contextlib import closing
from datetime import datetime

import matplotlib
import matplotlib.dates
import matplotlib.pyplot as plt
import requests
from statistics import mean


def main(args_in: list[str] | None = None) -> None:
    parser = argparse.ArgumentParser(description="Start server benchmark scenario")
    parser.add_argument("--name", type=str, help="Bench name", required=True)
    parser.add_argument("--runner-label", type=str, help="Runner label", required=True)
    parser.add_argument("--branch", type=str, help="Branch name", default="detached")
    parser.add_argument("--commit", type=str, help="Commit name", default="dirty")
    parser.add_argument("--host", type=str, help="Server listen host", default="0.0.0.0")
    parser.add_argument("--port", type=int, help="Server listen host", default="8080")
    parser.add_argument("--model-path-prefix", type=str, help="Prefix where to store the model files", default="models")
    parser.add_argument("--n-prompts", type=int,
                        help="SERVER_BENCH_N_PROMPTS: total prompts to randomly select in the benchmark", required=True)
    parser.add_argument("--max-prompt-tokens", type=int,
                        help="SERVER_BENCH_MAX_PROMPT_TOKENS: maximum prompt tokens to filter out in the dataset",
                        required=True)
    parser.add_argument("--max-tokens", type=int,
                        help="SERVER_BENCH_MAX_CONTEXT: maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens",
                        required=True)
    parser.add_argument("--hf-repo", type=str, help="Hugging Face model repository", required=True)
    parser.add_argument("--hf-file", type=str, help="Hugging Face model file", required=True)
    parser.add_argument("-ngl", "--n-gpu-layers", type=int, help="layers to the GPU for computation", required=True)
    parser.add_argument("--ctx-size", type=int, help="Set the size of the prompt context", required=True)
    parser.add_argument("--parallel", type=int, help="Set the number of slots for process requests", required=True)
    parser.add_argument("--batch-size", type=int, help="Set the batch size for prompt processing", required=True)
    parser.add_argument("--ubatch-size", type=int, help="physical maximum batch size", required=True)
    parser.add_argument("--scenario", type=str, help="Scenario to run", required=True)
    parser.add_argument("--duration", type=str, help="Bench scenario", required=True)

    args = parser.parse_args(args_in)

    start_time = time.time()

    # Start the server and performance scenario
    try:
        server_process = start_server(args)
    except Exception:
        print("bench: server start error :")
        traceback.print_exc(file=sys.stdout)
        sys.exit(1)

    # start the benchmark
    iterations = 0
    data = {}
    try:
        start_benchmark(args)

        with open("results.github.env", 'w') as github_env:
            # parse output
            with open('k6-results.json', 'r') as bench_results:
                # Load JSON data from file
                data = json.load(bench_results)
                for metric_name in data['metrics']:
                    for metric_metric in data['metrics'][metric_name]:
                        value = data['metrics'][metric_name][metric_metric]
                        if isinstance(value, float) or isinstance(value, int):
                            value = round(value, 2)
                            data['metrics'][metric_name][metric_metric]=value
                            github_env.write(
                                f"{escape_metric_name(metric_name)}_{escape_metric_name(metric_metric)}={value}\n")
                iterations = data['root_group']['checks']['success completion']['passes']

    except Exception:
        print("bench: error :")
        traceback.print_exc(file=sys.stdout)

    # Stop the server
    if server_process:
        try:
            print(f"bench: shutting down server pid={server_process.pid} ...")
            if os.name == 'nt':
                interrupt = signal.CTRL_C_EVENT
            else:
                interrupt = signal.SIGINT
            server_process.send_signal(interrupt)
            server_process.wait(0.5)

        except subprocess.TimeoutExpired:
            print(f"server still alive after 500ms, force-killing pid={server_process.pid} ...")
            server_process.kill()  # SIGKILL
            server_process.wait()

        while is_server_listening(args.host, args.port):
            time.sleep(0.1)

    title = (f"llama.cpp {args.name} on {args.runner_label}\n "
             f"duration={args.duration} {iterations} iterations")
    xlabel = (f"{args.hf_repo}/{args.hf_file}\n"
              f"parallel={args.parallel} ctx-size={args.ctx_size} ngl={args.n_gpu_layers} batch-size={args.batch_size} ubatch-size={args.ubatch_size} pp={args.max_prompt_tokens} pp+tg={args.max_tokens}\n"
              f"branch={args.branch} commit={args.commit}")

    # Prometheus
    end_time = time.time()
    prometheus_metrics = {}
    if is_server_listening("0.0.0.0", 9090):
        metrics = ['prompt_tokens_seconds', 'predicted_tokens_seconds',
                   'kv_cache_usage_ratio', 'requests_processing', 'requests_deferred']

        for metric in metrics:
            resp = requests.get(f"http://localhost:9090/api/v1/query_range",
                                params={'query': 'llamacpp:' + metric, 'start': start_time, 'end': end_time, 'step': 2})

            with open(f"{metric}.json", 'w') as metric_json:
                metric_json.write(resp.text)

            if resp.status_code != 200:
                print(f"bench: unable to extract prometheus metric {metric}: {resp.text}")
            else:
                metric_data = resp.json()
                values = metric_data['data']['result'][0]['values']
                timestamps, metric_values = zip(*values)
                metric_values = [float(value) for value in metric_values]
                prometheus_metrics[metric] = metric_values
                timestamps_dt = [str(datetime.fromtimestamp(int(ts))) for ts in timestamps]
                plt.figure(figsize=(16, 10), dpi=80)
                plt.plot(timestamps_dt, metric_values, label=metric)
                plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7)
                plt.yticks(fontsize=12, alpha=.7)

                ylabel = f"llamacpp:{metric}"
                plt.title(title,
                          fontsize=14, wrap=True)
                plt.grid(axis='both', alpha=.3)
                plt.ylabel(ylabel, fontsize=22)
                plt.xlabel(xlabel, fontsize=14, wrap=True)
                plt.gca().xaxis.set_major_locator(matplotlib.dates.MinuteLocator())
                plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y-%m-%d %H:%M:%S"))
                plt.gcf().autofmt_xdate()

                # Remove borders
                plt.gca().spines["top"].set_alpha(0.0)
                plt.gca().spines["bottom"].set_alpha(0.3)
                plt.gca().spines["right"].set_alpha(0.0)
                plt.gca().spines["left"].set_alpha(0.3)

                # Save the plot as a jpg image
                plt.savefig(f'{metric}.jpg', dpi=60)
                plt.close()

                # Mermaid format in case images upload failed
                with open(f"{metric}.mermaid", 'w') as mermaid_f:
                    mermaid = (
                    f"""---
config:
    xyChart:
        titleFontSize: 12
        width: 900
        height: 600
    themeVariables:
        xyChart:
            titleColor: "#000000"
---
xychart-beta
    title "{title}"
    y-axis "llamacpp:{metric}"
    x-axis "llamacpp:{metric}" {int(min(timestamps))} --> {int(max(timestamps))}
    line [{', '.join([str(round(float(value), 2)) for value in metric_values])}]
                    """)
                    mermaid_f.write(mermaid)

    # 140 chars max for commit status description
    bench_results = {
        "i": iterations,
        "req": {
            "p95": round(data['metrics']["http_req_duration"]["p(95)"], 2),
            "avg": round(data['metrics']["http_req_duration"]["avg"], 2),
        },
        "pp": {
            "p95": round(data['metrics']["llamacpp_prompt_processing_second"]["p(95)"], 2),
            "avg": round(data['metrics']["llamacpp_prompt_processing_second"]["avg"], 2),
            "0": round(mean(prometheus_metrics['prompt_tokens_seconds']), 2),
        },
        "tg": {
            "p95": round(data['metrics']["llamacpp_tokens_second"]["p(95)"], 2),
            "avg": round(data['metrics']["llamacpp_tokens_second"]["avg"], 2),
            "0": round(mean(prometheus_metrics['predicted_tokens_seconds']), 2),
        },
    }
    with open("results.github.env", 'a') as github_env:
        github_env.write(f"BENCH_RESULTS={json.dumps(bench_results, indent=None, separators=(',', ':') )}\n")
        github_env.write(f"BENCH_ITERATIONS={iterations}\n")

        title = title.replace('\n', ' ')
        xlabel = xlabel.replace('\n', ' ')
        github_env.write(f"BENCH_GRAPH_TITLE={title}\n")
        github_env.write(f"BENCH_GRAPH_XLABEL={xlabel}\n")


def start_benchmark(args):
    k6_path = './k6'
    if 'BENCH_K6_BIN_PATH' in os.environ:
        k6_path = os.environ['BENCH_K6_BIN_PATH']
    k6_args = [
        'run', args.scenario,
        '--no-color',
    ]
    k6_args.extend(['--duration', args.duration])
    k6_args.extend(['--iterations', args.n_prompts])
    k6_args.extend(['--vus', args.parallel])
    k6_args.extend(['--summary-export', 'k6-results.json'])
    args = f"SERVER_BENCH_N_PROMPTS={args.n_prompts} SERVER_BENCH_MAX_PROMPT_TOKENS={args.max_prompt_tokens} SERVER_BENCH_MAX_CONTEXT={args.max_tokens} "
    args = args + ' '.join([str(arg) for arg in [k6_path, *k6_args]])
    print(f"bench: starting k6 with: {args}")
    k6_completed = subprocess.run(args, shell=True, stdout=sys.stdout, stderr=sys.stderr)
    if k6_completed.returncode != 0:
        raise Exception("bench: unable to run k6")


def start_server(args):
    server_process = start_server_background(args)

    attempts = 0
    max_attempts = 20
    if 'GITHUB_ACTIONS' in os.environ:
        max_attempts *= 2

    while not is_server_listening(args.host, args.port):
        attempts += 1
        if attempts > max_attempts:
            assert False, "server not started"
        print(f"bench:     waiting for server to start ...")
        time.sleep(0.5)

    print("bench: server started.")
    return server_process


def start_server_background(args):
    # Start the server
    server_path = '../../../build/bin/llama-server'
    if 'LLAMA_SERVER_BIN_PATH' in os.environ:
        server_path = os.environ['LLAMA_SERVER_BIN_PATH']
    server_args = [
        '--host', args.host,
        '--port', args.port,
    ]
    model_file = args.model_path_prefix + os.path.sep + args.hf_file
    model_dir  = os.path.dirname(model_file)
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    server_args.extend(['--model', model_file])
    server_args.extend(['--hf-repo', args.hf_repo])
    server_args.extend(['--hf-file', args.hf_file])
    server_args.extend(['--n-gpu-layers', args.n_gpu_layers])
    server_args.extend(['--ctx-size', args.ctx_size])
    server_args.extend(['--parallel', args.parallel])
    server_args.extend(['--batch-size', args.batch_size])
    server_args.extend(['--ubatch-size', args.ubatch_size])
    server_args.extend(['--n-predict', args.max_tokens * 2])
    server_args.extend(['--defrag-thold', "0.1"])
    server_args.append('--cont-batching')
    server_args.append('--metrics')
    server_args.append('--flash-attn')
    args = [str(arg) for arg in [server_path, *server_args]]
    print(f"bench: starting server with: {' '.join(args)}")
    pkwargs = {
        'stdout': subprocess.PIPE,
        'stderr': subprocess.PIPE
    }
    server_process = subprocess.Popen(
        args,
        **pkwargs)  # pyright: ignore[reportArgumentType, reportCallIssue]

    def server_log(in_stream, out_stream):
        for line in iter(in_stream.readline, b''):
            print(line.decode('utf-8'), end='', file=out_stream)

    thread_stdout = threading.Thread(target=server_log, args=(server_process.stdout, sys.stdout))
    thread_stdout.start()
    thread_stderr = threading.Thread(target=server_log, args=(server_process.stderr, sys.stderr))
    thread_stderr.start()

    return server_process


def is_server_listening(server_fqdn, server_port):
    with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
        result = sock.connect_ex((server_fqdn, server_port))
        _is_server_listening = result == 0
        if _is_server_listening:
            print(f"server is listening on {server_fqdn}:{server_port}...")
        return _is_server_listening


def escape_metric_name(metric_name):
    return re.sub('[^A-Z0-9]', '_', metric_name.upper())


if __name__ == '__main__':
    main()