File size: 142,443 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
#include "utils.hpp"

#include "arg.h"
#include "common.h"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include "log.h"
#include "sampling.h"
#include "speculative.h"

// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
// mime type for sending response
#define MIMETYPE_JSON "application/json; charset=utf-8"

// auto generated files (update with ./deps.sh)
#include "index.html.hpp"
#include "completion.js.hpp"
#include "loading.html.hpp"
#include "deps_daisyui.min.css.hpp"
#include "deps_markdown-it.js.hpp"
#include "deps_tailwindcss.js.hpp"
#include "deps_vue.esm-browser.js.hpp"

#include <atomic>
#include <condition_variable>
#include <cstddef>
#include <cinttypes>
#include <deque>
#include <memory>
#include <mutex>
#include <signal.h>
#include <thread>
#include <unordered_map>
#include <unordered_set>

using json = nlohmann::ordered_json;

enum stop_type {
    STOP_TYPE_FULL,
    STOP_TYPE_PARTIAL,
};

// state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
enum slot_state {
    SLOT_STATE_IDLE,
    SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
    SLOT_STATE_PROCESSING_PROMPT,
    SLOT_STATE_DONE_PROMPT,
    SLOT_STATE_GENERATING,
};

enum server_state {
    SERVER_STATE_LOADING_MODEL,  // Server is starting up, model not fully loaded yet
    SERVER_STATE_READY,          // Server is ready and model is loaded
};

enum server_task_type {
    SERVER_TASK_TYPE_INFERENCE,
    SERVER_TASK_TYPE_CANCEL,
    SERVER_TASK_TYPE_NEXT_RESPONSE,
    SERVER_TASK_TYPE_METRICS,
    SERVER_TASK_TYPE_SLOT_SAVE,
    SERVER_TASK_TYPE_SLOT_RESTORE,
    SERVER_TASK_TYPE_SLOT_ERASE,
    SERVER_TASK_TYPE_SET_LORA,
};

enum server_task_inf_type {
    SERVER_TASK_INF_TYPE_COMPLETION,
    SERVER_TASK_INF_TYPE_EMBEDDING,
    SERVER_TASK_INF_TYPE_RERANK,
    SERVER_TASK_INF_TYPE_INFILL,
};

struct server_task {
    int id        = -1; // to be filled by server_queue
    int id_target = -1; // used by SERVER_TASK_TYPE_CANCEL

    llama_tokens prompt_tokens;
    server_task_type type;
    json data;

    server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION;

    // utility function
    static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
        std::unordered_set<int> ids(tasks.size());
        for (size_t i = 0; i < tasks.size(); i++) {
            ids.insert(tasks[i].id);
        }
        return ids;
    }
};

struct server_task_result {
    int id       = -1;

    json data;

    bool stop;
    bool error;
};

struct server_static_file {
    const unsigned char * data;
    unsigned int size;
    const char * mime_type;
};

struct slot_params {
    bool stream       = true;
    bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt

    int32_t n_keep    =  0; // number of tokens to keep from initial prompt
    int32_t n_discard =  0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
    int32_t n_predict = -1; // new tokens to predict
    int32_t n_indent  =  0; // mininum line indentation for the generated text in number of whitespace characters

    int64_t t_max_prompt_ms  = -1; // TODO: implement
    int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit

    std::vector<std::string> antiprompt;

    struct common_params_sampling sampling;
    struct common_params_speculative speculative;
};

struct server_slot {
    int id;
    int id_task = -1;

    llama_batch batch_spec;

    llama_context * ctx_dft = nullptr;

    common_speculative * spec = nullptr;

    // the index relative to completion multi-task request
    size_t index = 0;

    struct slot_params params;

    slot_state state = SLOT_STATE_IDLE;

    // used to determine the slot that has been used the longest
    int64_t t_last_used = -1;

    // generation props
    int32_t n_ctx       = 0;  // context size per slot
    int32_t n_past      = 0;
    int32_t n_decoded   = 0;
    int32_t n_remaining = -1;
    int32_t i_batch     = -1;
    int32_t n_predict   = -1; // TODO: disambiguate from params.n_predict

    // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
    int32_t n_prompt_tokens           = 0;
    int32_t n_prompt_tokens_processed = 0;

    // input prompt tokens
    llama_tokens prompt_tokens;

    size_t last_nl_pos = 0;

    std::string generated_text;
    llama_tokens cache_tokens;
    std::vector<completion_token_output> generated_token_probs;

    server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION;

    bool has_next_token = true;
    bool has_new_line   = false;
    bool truncated      = false;
    bool stopped_eos    = false;
    bool stopped_word   = false;
    bool stopped_limit  = false;

    bool timings_per_token = false;

    bool oaicompat = false;

    std::string oaicompat_model;
    std::string stopping_word;

    // sampling
    json json_schema;

    struct common_sampler * smpl = nullptr;

    llama_token sampled;

    // stats
    size_t n_sent_text        = 0; // number of sent text character
    size_t n_sent_token_probs = 0;

    int64_t t_start_process_prompt;
    int64_t t_start_generation;

    double t_prompt_processing; // ms
    double t_token_generation;  // ms

    std::function<void(int)> callback_on_release;

    void reset() {
        SLT_DBG(*this, "%s", "\n");

        n_prompt_tokens    = 0;
        last_nl_pos        = 0;
        generated_text     = "";
        has_new_line       = false;
        truncated          = false;
        stopped_eos        = false;
        stopped_word       = false;
        stopped_limit      = false;
        stopping_word      = "";
        n_past             = 0;
        n_sent_text        = 0;
        n_sent_token_probs = 0;
        inf_type           = SERVER_TASK_INF_TYPE_COMPLETION;

        generated_token_probs.clear();
    }

    bool has_budget(const common_params & global_params) {
        if (params.n_predict == -1 && global_params.n_predict == -1) {
            return true; // limitless
        }

        n_remaining = -1;

        if (params.n_predict != -1) {
            n_remaining = params.n_predict - n_decoded;
        } else if (global_params.n_predict != -1) {
            n_remaining = global_params.n_predict - n_decoded;
        }

        return n_remaining > 0; // no budget
    }

    bool is_processing() const {
        return state != SLOT_STATE_IDLE;
    }

    bool can_speculate() const {
        return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
    }

    void add_token(const completion_token_output & token) {
        if (!is_processing()) {
            SLT_WRN(*this, "%s", "slot is not processing\n");
            return;
        }
        generated_token_probs.push_back(token);
    }

    void release() {
        if (is_processing()) {
            SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);

            t_last_used = ggml_time_us();
            t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
            state = SLOT_STATE_IDLE;
            callback_on_release(id);
        }
    }

    json get_formated_timings() const {
        return json {
            {"prompt_n",               n_prompt_tokens_processed},
            {"prompt_ms",              t_prompt_processing},
            {"prompt_per_token_ms",    t_prompt_processing / n_prompt_tokens_processed},
            {"prompt_per_second",      1e3 / t_prompt_processing * n_prompt_tokens_processed},

            {"predicted_n",            n_decoded},
            {"predicted_ms",           t_token_generation},
            {"predicted_per_token_ms", t_token_generation / n_decoded},
            {"predicted_per_second",   1e3 / t_token_generation * n_decoded},
        };
    }

    size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) {
        size_t stop_pos = std::string::npos;

        for (const std::string & word : params.antiprompt) {
            size_t pos;

            if (type == STOP_TYPE_FULL) {
                const size_t tmp      = word.size() + last_token_size;
                const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;

                pos = text.find(word, from_pos);
            } else {
                pos = find_partial_stop_string(word, text);
            }

            if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
                if (type == STOP_TYPE_FULL) {
                    stopped_word   = true;
                    stopping_word  = word;
                    has_next_token = false;
                }
                stop_pos = pos;
            }
        }

        return stop_pos;
    }

    void print_timings() const {
        const double t_prompt        =       t_prompt_processing / n_prompt_tokens_processed;
        const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;

        const double t_gen        =       t_token_generation / n_decoded;
        const double n_gen_second = 1e3 / t_token_generation * n_decoded;

        SLT_INF(*this,
                "\n"
                "\rprompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
                "\r       eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
                "\r      total time = %10.2f ms / %5d tokens\n",
                t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
                t_token_generation, n_decoded, t_gen, n_gen_second,
                t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
    }
};

struct server_metrics {
    int64_t t_start = 0;

    uint64_t n_prompt_tokens_processed_total = 0;
    uint64_t t_prompt_processing_total       = 0;
    uint64_t n_tokens_predicted_total        = 0;
    uint64_t t_tokens_generation_total       = 0;

    uint64_t n_prompt_tokens_processed = 0;
    uint64_t t_prompt_processing       = 0;

    uint64_t n_tokens_predicted  = 0;
    uint64_t t_tokens_generation = 0;

    uint64_t n_decode_total     = 0;
    uint64_t n_busy_slots_total = 0;

    void init() {
        t_start = ggml_time_us();
    }

    void on_prompt_eval(const server_slot & slot) {
        n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
        n_prompt_tokens_processed       += slot.n_prompt_tokens_processed;
        t_prompt_processing             += slot.t_prompt_processing;
        t_prompt_processing_total       += slot.t_prompt_processing;
    }

    void on_prediction(const server_slot & slot) {
        n_tokens_predicted_total   += slot.n_decoded;
        n_tokens_predicted         += slot.n_decoded;
        t_tokens_generation        += slot.t_token_generation;
        t_tokens_generation_total  += slot.t_token_generation;
    }

    void on_decoded(const std::vector<server_slot> & slots) {
        n_decode_total++;
        for (const auto & slot : slots) {
            if (slot.is_processing()) {
                n_busy_slots_total++;
            }
        }
    }

    void reset_bucket() {
        n_prompt_tokens_processed = 0;
        t_prompt_processing       = 0;
        n_tokens_predicted        = 0;
        t_tokens_generation       = 0;
    }
};

struct server_queue {
    int id = 0;
    bool running;

    // queues
    std::deque<server_task> queue_tasks;
    std::deque<server_task> queue_tasks_deferred;

    std::mutex mutex_tasks;
    std::condition_variable condition_tasks;

    // callback functions
    std::function<void(server_task)> callback_new_task;
    std::function<void(void)>        callback_update_slots;

    // Add a new task to the end of the queue
    int post(server_task task, bool front = false) {
        std::unique_lock<std::mutex> lock(mutex_tasks);
        if (task.id == -1) {
            task.id = id++;
        }
        QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
        if (front) {
            queue_tasks.push_front(std::move(task));
        } else {
            queue_tasks.push_back(std::move(task));
        }
        condition_tasks.notify_one();
        return task.id;
    }

    // multi-task version of post()
    int post(std::vector<server_task> & tasks, bool front = false) {
        std::unique_lock<std::mutex> lock(mutex_tasks);
        for (auto & task : tasks) {
            if (task.id == -1) {
                task.id = id++;
            }
            QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
            if (front) {
                queue_tasks.push_front(std::move(task));
            } else {
                queue_tasks.push_back(std::move(task));
            }
        }
        condition_tasks.notify_one();
        return 0;
    }

    // Add a new task, but defer until one slot is available
    void defer(server_task task) {
        std::unique_lock<std::mutex> lock(mutex_tasks);
        QUE_DBG("defer task, id = %d\n", task.id);
        queue_tasks_deferred.push_back(std::move(task));
        condition_tasks.notify_one();
    }

    // Get the next id for creating a new task
    int get_new_id() {
        std::unique_lock<std::mutex> lock(mutex_tasks);
        int new_id = id++;
        return new_id;
    }

    // Register function to process a new task
    void on_new_task(std::function<void(server_task)> callback) {
        callback_new_task = std::move(callback);
    }

    // Register the function to be called when all slots data is ready to be processed
    void on_update_slots(std::function<void(void)> callback) {
        callback_update_slots = std::move(callback);
    }

    // Call when the state of one slot is changed, it will move one task from deferred to main queue
    void pop_deferred_task() {
        std::unique_lock<std::mutex> lock(mutex_tasks);
        if (!queue_tasks_deferred.empty()) {
            queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
            queue_tasks_deferred.pop_front();
        }
        condition_tasks.notify_one();
    }

    // end the start_loop routine
    void terminate() {
        std::unique_lock<std::mutex> lock(mutex_tasks);
        running = false;
        condition_tasks.notify_all();
    }

    /**
     * Main loop consists of these steps:
     * - Wait until a new task arrives
     * - Process the task (i.e. maybe copy data into slot)
     * - Check if multitask is finished
     * - Update all slots
     */
    void start_loop() {
        running = true;

        while (true) {
            QUE_DBG("%s", "processing new tasks\n");

            while (true) {
                std::unique_lock<std::mutex> lock(mutex_tasks);
                if (queue_tasks.empty()) {
                    lock.unlock();
                    break;
                }
                server_task task = queue_tasks.front();
                queue_tasks.pop_front();
                lock.unlock();

                QUE_DBG("processing task, id = %d\n", task.id);
                callback_new_task(std::move(task));
            }

            // all tasks in the current loop is processed, slots data is now ready
            QUE_DBG("%s", "update slots\n");

            callback_update_slots();

            QUE_DBG("%s", "waiting for new tasks\n");
            {
                std::unique_lock<std::mutex> lock(mutex_tasks);
                if (queue_tasks.empty()) {
                    if (!running) {
                        QUE_DBG("%s", "terminate\n");
                        return;
                    }
                    condition_tasks.wait(lock, [&]{
                        return (!queue_tasks.empty() || !running);
                    });
                }
            }
        }
    }
};

struct server_response {
    // for keeping track of all tasks waiting for the result
    std::unordered_set<int> waiting_task_ids;

    // the main result queue
    std::vector<server_task_result> queue_results;

    std::mutex mutex_results;
    std::condition_variable condition_results;

    // add the id_task to the list of tasks waiting for response
    void add_waiting_task_id(int id_task) {
        SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());

        std::unique_lock<std::mutex> lock(mutex_results);
        waiting_task_ids.insert(id_task);
    }

    void add_waiting_tasks(const std::vector<server_task> & tasks) {
        std::unique_lock<std::mutex> lock(mutex_results);

        for (const auto & task : tasks) {
            SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
            waiting_task_ids.insert(task.id);
        }
    }

    // when the request is finished, we can remove task associated with it
    void remove_waiting_task_id(int id_task) {
        SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());

        std::unique_lock<std::mutex> lock(mutex_results);
        waiting_task_ids.erase(id_task);
    }

    void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
        std::unique_lock<std::mutex> lock(mutex_results);

        for (const auto & id_task : id_tasks) {
            SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
            waiting_task_ids.erase(id_task);
        }
    }

    // This function blocks the thread until there is a response for one of the id_tasks
    server_task_result recv(const std::unordered_set<int> & id_tasks) {
        while (true) {
            std::unique_lock<std::mutex> lock(mutex_results);
            condition_results.wait(lock, [&]{
                return !queue_results.empty();
            });

            for (int i = 0; i < (int) queue_results.size(); i++) {
                if (id_tasks.find(queue_results[i].id) != id_tasks.end()) {
                    server_task_result res = queue_results[i];
                    queue_results.erase(queue_results.begin() + i);
                    return res;
                }
            }
        }

        // should never reach here
    }

    // single-task version of recv()
    server_task_result recv(int id_task) {
        std::unordered_set<int> id_tasks = {id_task};
        return recv(id_tasks);
    }

    // Send a new result to a waiting id_task
    void send(server_task_result & result) {
        SRV_DBG("sending result for task id = %d\n", result.id);

        std::unique_lock<std::mutex> lock(mutex_results);
        for (const auto & id_task : waiting_task_ids) {
            if (result.id == id_task) {
                SRV_DBG("task id = %d moved to result queue\n", result.id);

                queue_results.push_back(std::move(result));
                condition_results.notify_all();
                return;
            }
        }
    }
};

struct server_context {
    common_params params_base;

    llama_model * model = nullptr;
    llama_context * ctx = nullptr;
    std::vector<common_lora_adapter_container> loras;

    llama_model * model_dft = nullptr;
    llama_context_params cparams_dft;

    llama_batch batch = {};

    bool clean_kv_cache = true;
    bool add_bos_token  = true;
    bool has_eos_token  = false;

    int32_t n_ctx; // total context for all clients / slots

    // slots / clients
    std::vector<server_slot> slots;
    json default_generation_settings_for_props;

    server_queue    queue_tasks;
    server_response queue_results;

    server_metrics metrics;

    // Necessary similarity of prompt for slot selection
    float slot_prompt_similarity = 0.0f;

    ~server_context() {
        if (ctx) {
            llama_free(ctx);
            ctx = nullptr;
        }

        if (model) {
            llama_free_model(model);
            model = nullptr;
        }

        if (model_dft) {
            llama_free_model(model_dft);
            model_dft = nullptr;
        }

        // Clear any sampling context
        for (server_slot & slot : slots) {
            common_sampler_free(slot.smpl);
            slot.smpl = nullptr;

            llama_free(slot.ctx_dft);
            slot.ctx_dft = nullptr;

            common_speculative_free(slot.spec);
            slot.spec = nullptr;

            llama_batch_free(slot.batch_spec);
        }

        llama_batch_free(batch);
    }

    bool load_model(const common_params & params) {
        SRV_INF("loading model '%s'\n", params.model.c_str());

        params_base = params;

        common_init_result llama_init = common_init_from_params(params_base);

        model = llama_init.model;
        ctx   = llama_init.context;
        loras = llama_init.lora_adapters;

        if (model == nullptr) {
            SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
            return false;
        }

        n_ctx = llama_n_ctx(ctx);

        add_bos_token = llama_add_bos_token(model);
        has_eos_token = !llama_add_eos_token(model);

        if (!params_base.speculative.model.empty()) {
            SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());

            auto params_dft = params_base;

            params_dft.devices      = params_base.speculative.devices;
            params_dft.model        = params_base.speculative.model;
            params_dft.n_ctx        = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
            params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
            params_dft.n_parallel   = 1;

            common_init_result llama_init_dft = common_init_from_params(params_dft);

            model_dft = llama_init_dft.model;

            if (model_dft == nullptr) {
                SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
                return false;
            }

            if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
                SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());

                llama_free      (llama_init_dft.context);
                llama_free_model(llama_init_dft.model);

                return false;
            }

            const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);

            cparams_dft = common_context_params_to_llama(params_dft);
            cparams_dft.n_batch = n_ctx_dft;

            // force F16 KV cache for the draft model for extra performance
            cparams_dft.type_k = GGML_TYPE_F16;
            cparams_dft.type_v = GGML_TYPE_F16;

            // the context is not needed - we will create one for each slot
            llama_free(llama_init_dft.context);
        }

        return true;
    }

    bool validate_model_chat_template() const {
        std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
        std::string template_key = "tokenizer.chat_template";
        int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
        if (res >= 0) {
            llama_chat_message chat[] = {{"user", "test"}};
            std::string tmpl = std::string(model_template.data(), model_template.size());
            int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
            return chat_res > 0;
        }
        return false;
    }

    void init() {
        const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;

        SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);

        for (int i = 0; i < params_base.n_parallel; i++) {
            server_slot slot;

            slot.id = i;
            slot.n_ctx = n_ctx_slot;
            slot.n_predict = params_base.n_predict;

            if (model_dft) {
                slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);

                slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
                if (slot.ctx_dft == nullptr) {
                    SRV_ERR("%s", "failed to create draft context\n");
                    return;
                }

                slot.spec = common_speculative_init(slot.ctx_dft);
                if (slot.spec == nullptr) {
                    SRV_ERR("%s", "failed to create speculator\n");
                    return;
                }
            }

            SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);

            slot.params.sampling = params_base.sampling;

            slot.callback_on_release = [this](int) {
                queue_tasks.pop_deferred_task();
            };

            slot.reset();

            slots.push_back(slot);
        }

        default_generation_settings_for_props = get_formated_generation(slots.front());
        default_generation_settings_for_props["seed"] = -1;

        // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
        // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
        {
            const int32_t n_batch = llama_n_batch(ctx);

            // only a single seq_id per token is needed
            batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
        }

        metrics.init();
    }

    server_slot * get_slot_by_id(int id) {
        for (server_slot & slot : slots) {
            if (slot.id == id) {
                return &slot;
            }
        }

        return nullptr;
    }

    server_slot * get_available_slot(const server_task & task) {
        server_slot * ret = nullptr;

        // find the slot that has at least n% prompt similarity
        if (ret == nullptr && slot_prompt_similarity != 0.0f) {
            int lcs_len = 0;
            float similarity = 0;

            for (server_slot & slot : slots) {
                // skip the slot if it is not available
                if (slot.is_processing()) {
                    continue;
                }

                // skip the slot if it does not contains cached tokens
                if (slot.cache_tokens.empty()) {
                    continue;
                }

                // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
                int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);

                // fraction of the common subsequence length compared to the current slot's prompt length
                float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());

                // select the current slot if the criteria match
                if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
                    lcs_len = cur_lcs_len;
                    similarity = cur_similarity;
                    ret = &slot;
                }
            }

            if (ret != nullptr) {
                SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
            }
        }

        // find the slot that has been least recently used
        if (ret == nullptr) {
            int64_t t_last = ggml_time_us();
            for (server_slot & slot : slots) {
                // skip the slot if it is not available
                if (slot.is_processing()) {
                    continue;
                }

                // select the current slot if the criteria match
                if (slot.t_last_used < t_last) {
                    t_last = slot.t_last_used;
                    ret = &slot;
                }
            }

            if (ret != nullptr) {
                SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
            }
        }

        return ret;
    }

    bool launch_slot_with_task(server_slot & slot, const server_task & task) {
        // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
        slot_params defaults;
        defaults.sampling    = params_base.sampling;
        defaults.speculative = params_base.speculative;

        const auto & data = task.data;

        if (data.count("__oaicompat") != 0) {
            slot.oaicompat = true;
            slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
        } else {
            slot.oaicompat = false;
            slot.oaicompat_model = "";
        }

        slot.timings_per_token       = json_value(data, "timings_per_token",  false);

        slot.params.stream           = json_value(data, "stream",             false);
        slot.params.cache_prompt     = json_value(data, "cache_prompt",       true);
        slot.params.n_predict        = json_value(data, "n_predict",          json_value(data, "max_tokens", defaults.n_predict));
        slot.params.n_indent         = json_value(data, "n_indent",           defaults.n_indent);
        slot.params.n_keep           = json_value(data, "n_keep",             defaults.n_keep);
        slot.params.n_discard        = json_value(data, "n_discard",          defaults.n_discard);
      //slot.params.t_max_prompt_ms  = json_value(data, "t_max_prompt_ms",    defaults.t_max_prompt_ms); // TODO: implement
        slot.params.t_max_predict_ms = json_value(data, "t_max_predict_ms",   defaults.t_max_predict_ms);

        slot.params.sampling.top_k              = json_value(data, "top_k",              defaults.sampling.top_k);
        slot.params.sampling.top_p              = json_value(data, "top_p",              defaults.sampling.top_p);
        slot.params.sampling.min_p              = json_value(data, "min_p",              defaults.sampling.min_p);
        slot.params.sampling.xtc_probability    = json_value(data, "xtc_probability",    defaults.sampling.xtc_probability);
        slot.params.sampling.xtc_threshold      = json_value(data, "xtc_threshold",      defaults.sampling.xtc_threshold);
        slot.params.sampling.typ_p              = json_value(data, "typical_p",          defaults.sampling.typ_p);
        slot.params.sampling.temp               = json_value(data, "temperature",        defaults.sampling.temp);
        slot.params.sampling.dynatemp_range     = json_value(data, "dynatemp_range",     defaults.sampling.dynatemp_range);
        slot.params.sampling.dynatemp_exponent  = json_value(data, "dynatemp_exponent",  defaults.sampling.dynatemp_exponent);
        slot.params.sampling.penalty_last_n     = json_value(data, "repeat_last_n",      defaults.sampling.penalty_last_n);
        slot.params.sampling.penalty_repeat     = json_value(data, "repeat_penalty",     defaults.sampling.penalty_repeat);
        slot.params.sampling.penalty_freq       = json_value(data, "frequency_penalty",  defaults.sampling.penalty_freq);
        slot.params.sampling.penalty_present    = json_value(data, "presence_penalty",   defaults.sampling.penalty_present);
        slot.params.sampling.dry_multiplier     = json_value(data, "dry_multiplier",     defaults.sampling.dry_multiplier);
        slot.params.sampling.dry_base           = json_value(data, "dry_base",           defaults.sampling.dry_base);
        slot.params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
        slot.params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
        slot.params.sampling.mirostat           = json_value(data, "mirostat",           defaults.sampling.mirostat);
        slot.params.sampling.mirostat_tau       = json_value(data, "mirostat_tau",       defaults.sampling.mirostat_tau);
        slot.params.sampling.mirostat_eta       = json_value(data, "mirostat_eta",       defaults.sampling.mirostat_eta);
        slot.params.sampling.penalize_nl        = json_value(data, "penalize_nl",        defaults.sampling.penalize_nl);
        slot.params.sampling.seed               = json_value(data, "seed",               defaults.sampling.seed);
        slot.params.sampling.n_probs            = json_value(data, "n_probs",            defaults.sampling.n_probs);
        slot.params.sampling.min_keep           = json_value(data, "min_keep",           defaults.sampling.min_keep);

        slot.params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
        slot.params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
        slot.params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);

        slot.params.speculative.n_min = std::min(slot.params.speculative.n_max, slot.params.speculative.n_min);

        if (slot.params.sampling.dry_base < 1.0f) {
           slot.params.sampling.dry_base = defaults.sampling.dry_base;
        }

        // sequence breakers for DRY
        {
            // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
            // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39

            if (data.contains("dry_sequence_breakers")) {
                slot.params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
                if (slot.params.sampling.dry_sequence_breakers.empty()) {
                    send_error(task, "Error: dry_sequence_breakers must be a non-empty array of strings", ERROR_TYPE_INVALID_REQUEST);
                    return false;
                }
            }
        }

        // process "json_schema" and "grammar"
        if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
            send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
            return false;
        }
        if (data.contains("json_schema") && !data.contains("grammar")) {
            try {
                auto schema                  = json_value(data, "json_schema", json::object());
                slot.params.sampling.grammar = json_schema_to_grammar(schema);
            } catch (const std::exception & e) {
                send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
                return false;
            }
        } else {
            slot.params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
        }

        if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
            // Might be better to reject the request with a 400 ?
            slot.params.n_predict = slot.n_predict;
            SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
        }

        {
            slot.params.sampling.logit_bias.clear();

            if (json_value(data, "ignore_eos", false) && has_eos_token) {
                slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
            }

            const auto & logit_bias = data.find("logit_bias");
            if (logit_bias != data.end() && logit_bias->is_array()) {
                const int n_vocab = llama_n_vocab(model);
                for (const auto & el : *logit_bias) {
                    // TODO: we may want to throw errors here, in case "el" is incorrect
                    if (el.is_array() && el.size() == 2) {
                        float bias;
                        if (el[1].is_number()) {
                            bias = el[1].get<float>();
                        } else if (el[1].is_boolean() && !el[1].get<bool>()) {
                            bias = -INFINITY;
                        } else {
                            continue;
                        }

                        if (el[0].is_number_integer()) {
                            llama_token tok = el[0].get<llama_token>();
                            if (tok >= 0 && tok < n_vocab) {
                                slot.params.sampling.logit_bias.push_back({tok, bias});
                            }
                        } else if (el[0].is_string()) {
                            auto toks = common_tokenize(model, el[0].get<std::string>(), false);
                            for (auto tok : toks) {
                                slot.params.sampling.logit_bias.push_back({tok, bias});
                            }
                        }
                    }
                }
            }
        }

        {
            slot.params.antiprompt.clear();

            const auto & stop = data.find("stop");
            if (stop != data.end() && stop->is_array()) {
                for (const auto & word : *stop) {
                    if (!word.empty()) {
                        slot.params.antiprompt.push_back(word);
                    }
                }
            }
        }

        {
            const auto & samplers = data.find("samplers");
            if (samplers != data.end()) {
                if (samplers->is_array()) {
                    std::vector<std::string> sampler_names;
                    for (const auto & name : *samplers) {
                        if (name.is_string()) {
                            sampler_names.emplace_back(name);
                        }
                    }
                    slot.params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
                } else if (samplers->is_string()){
                    std::string sampler_string;
                    for (const auto & name : *samplers) {
                        sampler_string += name;
                    }
                    slot.params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
                }
            } else {
                slot.params.sampling.samplers = defaults.sampling.samplers;
            }
        }

        {
            if (slot.smpl != nullptr) {
                common_sampler_free(slot.smpl);
            }

            slot.smpl = common_sampler_init(model, slot.params.sampling);
            if (slot.smpl == nullptr) {
                // for now, the only error that may happen here is invalid grammar
                send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
                return false;
            }
        }

        if (slot.ctx_dft) {
            llama_batch_free(slot.batch_spec);

            slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
        }

        slot.state = SLOT_STATE_STARTED;

        SLT_INF(slot, "%s", "processing task\n");

        return true;
    }

    void kv_cache_clear() {
        SRV_DBG("%s", "clearing KV cache\n");

        // clear the entire KV cache
        llama_kv_cache_clear(ctx);
        clean_kv_cache = false;
    }

    bool process_token(completion_token_output & result, server_slot & slot) {
        // remember which tokens were sampled - used for repetition penalties during sampling
        const std::string token_str = common_token_to_piece(ctx, result.tok, params_base.special);
        slot.sampled = result.tok;

        // search stop word and delete it
        slot.generated_text += token_str;
        slot.has_next_token = true;

        // check if there is incomplete UTF-8 character at the end
        bool incomplete = false;
        for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
            unsigned char c = slot.generated_text[slot.generated_text.size() - i];
            if ((c & 0xC0) == 0x80) {
                // continuation byte: 10xxxxxx
                continue;
            }
            if ((c & 0xE0) == 0xC0) {
                // 2-byte character: 110xxxxx ...
                incomplete = i < 2;
            } else if ((c & 0xF0) == 0xE0) {
                // 3-byte character: 1110xxxx ...
                incomplete = i < 3;
            } else if ((c & 0xF8) == 0xF0) {
                // 4-byte character: 11110xxx ...
                incomplete = i < 4;
            }
            // else 1-byte character or invalid byte
            break;
        }

        if (!incomplete) {
            size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());

            const std::string str_test = slot.generated_text.substr(pos);
            bool send_text = true;

            size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
            if (stop_pos != std::string::npos) {
                slot.generated_text.erase(
                    slot.generated_text.begin() + pos + stop_pos,
                    slot.generated_text.end());
                pos = std::min(slot.n_sent_text, slot.generated_text.size());
            } else if (slot.has_next_token) {
                stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
                send_text = stop_pos == std::string::npos;
            }

            // check if there is any token to predict
            if (send_text) {
                // no send the stop word in the response
                result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
                slot.n_sent_text += result.text_to_send.size();
                // add the token to slot queue and cache
            }

            slot.add_token(result);
            if (slot.params.stream) {
                send_partial_response(slot, result);
            }
        }

        if (incomplete) {
            slot.has_next_token = true;
        }

        // check the limits
        if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
            slot.stopped_limit  = true;
            slot.has_next_token = false;

            SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
        }

        if (slot.has_new_line) {
            // if we have already seen a new line, we stop after a certain time limit
            if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
                slot.stopped_limit  = true;
                slot.has_next_token = false;

                SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
            }

            // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
            if (slot.params.n_indent > 0) {
                // check the current indentation
                // TODO: improve by not doing it more than once for each new line
                if (slot.last_nl_pos > 0) {
                    size_t pos = slot.last_nl_pos;

                    int n_indent = 0;
                    while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
                        n_indent++;
                        pos++;
                    }

                    if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
                        slot.stopped_limit  = true;
                        slot.has_next_token = false;

                        // cut the last line
                        slot.generated_text.erase(pos, std::string::npos);

                        SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
                    }
                }

                // find the next new line
                {
                    const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);

                    if (pos != std::string::npos) {
                        slot.last_nl_pos = pos + 1;
                    }
                }
            }
        }

        // check if there is a new line in the generated text
        if (result.text_to_send.find('\n') != std::string::npos) {
            slot.has_new_line = true;
        }

        // if context shift is disabled, we stop when it reaches the context limit
        if (slot.n_past >= slot.n_ctx) {
            slot.truncated      = true;
            slot.stopped_limit  = true;
            slot.has_next_token = false;

            SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
                    slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
        }

        if (llama_token_is_eog(model, result.tok)) {
            slot.stopped_eos    = true;
            slot.has_next_token = false;

            SLT_DBG(slot, "%s", "stopped by EOS\n");
        }

        const auto n_ctx_train = llama_n_ctx_train(model);

        if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
            slot.truncated      = true;
            slot.stopped_limit  = true;
            slot.has_next_token = false; // stop prediction

            SLT_WRN(slot,
                    "n_predict (%d) is set for infinite generation. "
                    "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
                    slot.params.n_predict, n_ctx_train);
        }

        SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());

        return slot.has_next_token; // continue
    }

    json get_formated_generation(const server_slot & slot) const {
        std::vector<std::string> samplers;
        samplers.reserve(slot.params.sampling.samplers.size());
        for (const auto & sampler : slot.params.sampling.samplers) {
            samplers.emplace_back(common_sampler_type_to_str(sampler));
        }

        return json {
            {"n_ctx",                     slot.n_ctx},
            {"n_predict",                 slot.n_predict},     // Server configured n_predict
            {"model",                     params_base.model_alias},
            {"seed",                      slot.params.sampling.seed},
            {"seed_cur",                  slot.smpl ? common_sampler_get_seed(slot.smpl) : 0},
            {"temperature",               slot.params.sampling.temp},
            {"dynatemp_range",            slot.params.sampling.dynatemp_range},
            {"dynatemp_exponent",         slot.params.sampling.dynatemp_exponent},
            {"top_k",                     slot.params.sampling.top_k},
            {"top_p",                     slot.params.sampling.top_p},
            {"min_p",                     slot.params.sampling.min_p},
            {"xtc_probability",           slot.params.sampling.xtc_probability},
            {"xtc_threshold",             slot.params.sampling.xtc_threshold},
            {"typical_p",                 slot.params.sampling.typ_p},
            {"repeat_last_n",             slot.params.sampling.penalty_last_n},
            {"repeat_penalty",            slot.params.sampling.penalty_repeat},
            {"presence_penalty",          slot.params.sampling.penalty_present},
            {"frequency_penalty",         slot.params.sampling.penalty_freq},
            {"dry_multiplier",            slot.params.sampling.dry_multiplier},
            {"dry_base",                  slot.params.sampling.dry_base},
            {"dry_allowed_length",        slot.params.sampling.dry_allowed_length},
            {"dry_penalty_last_n",        slot.params.sampling.dry_penalty_last_n},
            {"dry_sequence_breakers",     slot.params.sampling.dry_sequence_breakers},
            {"mirostat",                  slot.params.sampling.mirostat},
            {"mirostat_tau",              slot.params.sampling.mirostat_tau},
            {"mirostat_eta",              slot.params.sampling.mirostat_eta},
            {"penalize_nl",               slot.params.sampling.penalize_nl},
            {"stop",                      slot.params.antiprompt},
            {"max_tokens",                slot.params.n_predict}, // User configured n_predict
            {"n_keep",                    slot.params.n_keep},
            {"n_discard",                 slot.params.n_discard},
            {"ignore_eos",                slot.params.sampling.ignore_eos},
            {"stream",                    slot.params.stream},
          //{"logit_bias",                slot.params.sampling.logit_bias},
            {"n_probs",                   slot.params.sampling.n_probs},
            {"min_keep",                  slot.params.sampling.min_keep},
            {"grammar",                   slot.params.sampling.grammar},
            {"samplers",                  samplers},
            {"speculative",               slot.can_speculate()},
            {"speculative.n_max",         slot.params.speculative.n_max},
            {"speculative.n_min",         slot.params.speculative.n_min},
            {"speculative.p_min",         slot.params.speculative.p_min},
            {"timings_per_token",         slot.timings_per_token},
        };
    }

    void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
        send_error(task.id, error, type);
    }

    void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
        send_error(slot.id_task, error, type);
    }

    void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
        SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());

        server_task_result res;
        res.id       = id_task;
        res.stop     = false;
        res.error    = true;
        res.data     = format_error_response(error, type);

        queue_results.send(res);
    }

    void send_partial_response(server_slot & slot, completion_token_output tkn) {
        server_task_result res;
        res.id       = slot.id_task;
        res.error    = false;
        res.stop     = false;
        res.data     = json {
            {"content",    tkn.text_to_send},
            {"stop",       false},
            {"id_slot",    slot.id},
            {"multimodal", false},
            {"index",      slot.index},
        };

        if (slot.params.sampling.n_probs > 0) {
            const llama_tokens to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
            const size_t probs_pos      = std::min(slot.n_sent_token_probs,                       slot.generated_token_probs.size());
            const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());

            std::vector<completion_token_output> probs_output;
            if (probs_pos < probs_stop_pos) {
                probs_output = std::vector<completion_token_output>(
                        slot.generated_token_probs.begin() + probs_pos,
                        slot.generated_token_probs.begin() + probs_stop_pos);
            }
            slot.n_sent_token_probs = probs_stop_pos;

            res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
        }

        if (slot.oaicompat) {
            res.data["oaicompat_token_ctr"] = slot.n_decoded;
            res.data["model"] = slot.oaicompat_model;
        }

        if (slot.timings_per_token) {
            res.data["timings"] = slot.get_formated_timings();
        }

        queue_results.send(res);
    }

    void send_final_response(const server_slot & slot) {
        server_task_result res;
        res.id       = slot.id_task;
        res.error    = false;
        res.stop     = true;
        res.data     = json {
            {"content",             !slot.params.stream ? slot.generated_text : ""},
            {"id_slot",             slot.id},
            {"stop",                true},
            {"model",               params_base.model_alias},
            {"tokens_predicted",    slot.n_decoded},
            {"tokens_evaluated",    slot.n_prompt_tokens},
            {"generation_settings", get_formated_generation(slot)},
            {"prompt",              common_detokenize(ctx, slot.prompt_tokens)},
            {"has_new_line",        slot.has_new_line},
            {"truncated",           slot.truncated},
            {"stopped_eos",         slot.stopped_eos},
            {"stopped_word",        slot.stopped_word},
            {"stopped_limit",       slot.stopped_limit},
            {"stopping_word",       slot.stopping_word},
            {"tokens_cached",       slot.n_past},
            {"timings",             slot.get_formated_timings()},
            {"index",               slot.index},
        };

        if (slot.params.sampling.n_probs > 0) {
            std::vector<completion_token_output> probs;
            if (!slot.params.stream && slot.stopped_word) {
                const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);

                size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
                probs = std::vector<completion_token_output>(
                        slot.generated_token_probs.begin(),
                        slot.generated_token_probs.end() - safe_offset);
            } else {
                probs = std::vector<completion_token_output>(
                        slot.generated_token_probs.begin(),
                        slot.generated_token_probs.end());
            }

            res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs);
        }

        if (slot.oaicompat) {
            res.data["oaicompat_token_ctr"] = slot.n_decoded;
            res.data["model"] = slot.oaicompat_model;
        }

        queue_results.send(res);
    }

    void send_embedding(const server_slot & slot, const llama_batch & batch) {
        server_task_result res;
        res.id    = slot.id_task;
        res.error = false;
        res.stop  = true;

        const int n_embd = llama_n_embd(model);

        std::vector<float> embd_res(n_embd, 0.0f);

        for (int i = 0; i < batch.n_tokens; ++i) {
            if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
                continue;
            }

            const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
            if (embd == NULL) {
                embd = llama_get_embeddings_ith(ctx, i);
            }

            if (embd == NULL) {
                SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);

                res.data = json {
                    {"embedding", std::vector<float>(n_embd, 0.0f)},
                    {"index",     slot.index},
                };

                continue;
            }

            common_embd_normalize(embd, embd_res.data(), n_embd);

            res.data = json {
                {"embedding", embd_res},
                {"index",     slot.index},
            };
        }

        SLT_DBG(slot, "%s", "sending embeddings\n");

        queue_results.send(res);
    }

    void send_rerank(const server_slot & slot, const llama_batch & batch) {
        server_task_result res;
        res.id    = slot.id_task;
        res.error = false;
        res.stop  = true;

        for (int i = 0; i < batch.n_tokens; ++i) {
            if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
                continue;
            }

            const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
            if (embd == NULL) {
                embd = llama_get_embeddings_ith(ctx, i);
            }

            if (embd == NULL) {
                SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);

                res.data = json {
                    {"index", slot.index},
                    {"score", -1e6},
                };

                continue;
            }

            res.data = json {
                {"index", slot.index},
                {"score", embd[0]},
            };
        }

        SLT_DBG(slot, "sending rerank result, res = '%s'\n", res.data.dump().c_str());

        queue_results.send(res);
    }

    //
    // Functions to create new task(s) and receive result(s)
    //

    // break the input "prompt" into multiple tasks if needed, then format and tokenize the input prompt(s)
    std::vector<server_task> create_tasks_inference(json data, server_task_inf_type inf_type) {
        std::vector<server_task> tasks;
        auto create_task = [&](json & task_data, llama_tokens & prompt_tokens) {
            SRV_DBG("create task, n_tokens = %d\n", (int) prompt_tokens.size());
            server_task task;
            task.id            = queue_tasks.get_new_id();
            task.inf_type      = inf_type;
            task.type          = SERVER_TASK_TYPE_INFERENCE;
            task.data          = task_data;
            task.prompt_tokens = std::move(prompt_tokens);
            tasks.push_back(std::move(task));
        };

        static constexpr const char * error_msg = "\"prompt\" must be a string, an array of token ids or an array of prompts";
        if (!data.contains("prompt")) {
            throw std::runtime_error(error_msg);
        }

        // because llama_tokenize api is thread-safe, we can tokenize the prompt from HTTP thread
        bool add_special = inf_type != SERVER_TASK_INF_TYPE_RERANK && inf_type != SERVER_TASK_INF_TYPE_INFILL;
        std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx, data.at("prompt"), add_special, true);
        switch (inf_type) {
            case SERVER_TASK_INF_TYPE_RERANK:
                {
                    // prompts[0] is the question
                    // the rest are the answers/documents
                    GGML_ASSERT(tokenized_prompts.size() > 1);
                    SRV_DBG("creating rerank tasks, n_prompts = %d\n", (int) tokenized_prompts.size() - 1);
                    for (size_t i = 1; i < tokenized_prompts.size(); i++) {
                        data["index"] = i - 1;
                        auto tokens = format_rerank(model, tokenized_prompts[0], tokenized_prompts[i]);
                        create_task(data, tokens);
                    }
                } break;
            case SERVER_TASK_INF_TYPE_INFILL:
                {
                    SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
                    for (size_t i = 0; i < tokenized_prompts.size(); i++) {
                        data["index"] = i;
                        auto tokens = format_infill(
                            ctx,
                            data.at("input_prefix"),
                            data.at("input_suffix"),
                            data.at("input_extra"),
                            params_base.n_batch,
                            params_base.n_predict,
                            slots[0].n_ctx, // TODO: there should be a better way
                            params_base.spm_infill,
                            tokenized_prompts[i]
                        );
                        create_task(data, tokens);
                    }
                } break;
            default:
                {
                    SRV_DBG("creating multi-prompt tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
                    for (size_t i = 0; i < tokenized_prompts.size(); i++) {
                        data["index"] = i;
                        create_task(data, tokenized_prompts[i]);
                    }
                }
        }

        return tasks;
    }

    void cancel_tasks(const std::unordered_set<int> & id_tasks) {
        std::vector<server_task> cancel_tasks;
        cancel_tasks.reserve(id_tasks.size());
        for (const auto & id_task : id_tasks) {
            SRV_WRN("cancel task, id_task = %d\n", id_task);

            server_task task;
            task.type      = SERVER_TASK_TYPE_CANCEL;
            task.id_target = id_task;
            cancel_tasks.push_back(task);
            queue_results.remove_waiting_task_id(id_task);
        }
        // push to beginning of the queue, so it has highest priority
        queue_tasks.post(cancel_tasks, true);
    }

    // receive the results from task(s) created by create_tasks_inference
    void receive_cmpl_results(
            const std::unordered_set<int> & id_tasks,
            const std::function<void(std::vector<server_task_result>&)> & result_handler,
            const std::function<void(json)> & error_handler) {
        // TODO: currently, there is no way to detect the client has cancelled the request
        std::vector<server_task_result> results(id_tasks.size());
        for (size_t i = 0; i < id_tasks.size(); i++) {
            server_task_result result = queue_results.recv(id_tasks);

            if (result.error) {
                error_handler(result.data);
                cancel_tasks(id_tasks);
                return;
            }

            const size_t idx = result.data["index"];
            GGML_ASSERT(idx < results.size() && "index out of range");

            results[idx] = result;
        }
        result_handler(results);
    }

    // receive the results from task(s) created by create_tasks_inference, in stream mode
    void receive_cmpl_results_stream(
            const std::unordered_set<int> & id_tasks, const
            std::function<bool(server_task_result&)> & result_handler, const
            std::function<void(json)> & error_handler) {
        size_t n_finished = 0;
        while (true) {
            server_task_result result = queue_results.recv(id_tasks);
            if (!result_handler(result)) {
                cancel_tasks(id_tasks);
                break;
            }

            if (result.error) {
                error_handler(result.data);
                cancel_tasks(id_tasks);
                break;
            }

            if (result.stop) {
                if (++n_finished == id_tasks.size()) {
                    break;
                }
            }
        }
    }

    //
    // Functions to process the task
    //

    void process_single_task(server_task task) {
        switch (task.type) {
            case SERVER_TASK_TYPE_INFERENCE:
                {
                    const int id_slot = json_value(task.data, "id_slot", -1);

                    server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);

                    if (slot == nullptr) {
                        // if no slot is available, we defer this task for processing later
                        SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
                        queue_tasks.defer(task);
                        break;
                    }
                    if (slot->is_processing()) {
                        // if requested slot is unavailable, we defer this task for processing later
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
                        queue_tasks.defer(task);
                        break;
                    }

                    slot->reset();

                    slot->id_task       = task.id;
                    slot->inf_type      = task.inf_type;
                    slot->index         = json_value(task.data, "index", 0);
                    slot->prompt_tokens = std::move(task.prompt_tokens);

                    if (!launch_slot_with_task(*slot, task)) {
                        SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
                        break;
                    }
                } break;
            case SERVER_TASK_TYPE_CANCEL:
                {
                    // release slot linked with the task id
                    for (auto & slot : slots) {
                        if (slot.id_task == task.id_target) {
                            slot.release();
                            break;
                        }
                    }
                } break;
            case SERVER_TASK_TYPE_NEXT_RESPONSE:
                {
                    // do nothing
                } break;
            case SERVER_TASK_TYPE_METRICS:
                {
                    json slots_data = json::array();

                    int n_idle_slots       = 0;
                    int n_processing_slots = 0;

                    for (server_slot & slot : slots) {
                        json slot_data = get_formated_generation(slot);
                        slot_data["id"]            = slot.id;
                        slot_data["id_task"]       = slot.id_task;
                        slot_data["is_processing"] = slot.is_processing();
                        slot_data["prompt"]        = common_detokenize(ctx, slot.prompt_tokens);
                        slot_data["next_token"]    = {
                            {"has_next_token", slot.has_next_token},
                            {"has_new_line",   slot.has_new_line},
                            {"n_remain",       slot.n_remaining},
                            {"n_decoded",      slot.n_decoded},
                            {"stopped_eos",    slot.stopped_eos},
                            {"stopped_word",   slot.stopped_word},
                            {"stopped_limit",  slot.stopped_limit},
                            {"stopping_word",  slot.stopping_word},
                        };

                        if (slot.is_processing()) {
                            n_processing_slots++;
                        } else {
                            n_idle_slots++;
                        }

                        slots_data.push_back(slot_data);
                    }
                    SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);

                    server_task_result res;
                    res.id       = task.id;
                    res.stop     = true;
                    res.error    = false;
                    res.data     = {
                        { "idle",                            n_idle_slots       },
                        { "processing",                      n_processing_slots },
                        { "deferred",                        queue_tasks.queue_tasks_deferred.size() },
                        { "t_start",                         metrics.t_start},

                        { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
                        { "t_tokens_generation_total",       metrics.t_tokens_generation_total},
                        { "n_tokens_predicted_total",        metrics.n_tokens_predicted_total},
                        { "t_prompt_processing_total",       metrics.t_prompt_processing_total},

                        { "n_prompt_tokens_processed",       metrics.n_prompt_tokens_processed},
                        { "t_prompt_processing",             metrics.t_prompt_processing},
                        { "n_tokens_predicted",              metrics.n_tokens_predicted},
                        { "t_tokens_generation",             metrics.t_tokens_generation},

                        { "n_decode_total",                  metrics.n_decode_total},
                        { "n_busy_slots_total",              metrics.n_busy_slots_total},

                        { "kv_cache_tokens_count",           llama_get_kv_cache_token_count(ctx)},
                        { "kv_cache_used_cells",             llama_get_kv_cache_used_cells(ctx)},

                        { "slots",                           slots_data },
                    };

                    if (json_value(task.data, "reset_bucket", false)) {
                        metrics.reset_bucket();
                    }
                    queue_results.send(res);
                } break;
            case SERVER_TASK_TYPE_SLOT_SAVE:
                {
                    int id_slot = task.data.at("id_slot");
                    server_slot * slot = get_slot_by_id(id_slot);
                    if (slot == nullptr) {
                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
                        break;
                    }
                    if (slot->is_processing()) {
                        // if requested slot is unavailable, we defer this task for processing later
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
                        queue_tasks.defer(task);
                        break;
                    }

                    const size_t token_count = slot->cache_tokens.size();
                    const int64_t t_start = ggml_time_us();

                    std::string filename = task.data.at("filename");
                    std::string filepath = task.data.at("filepath");

                    const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);

                    const int64_t t_end = ggml_time_us();
                    const double t_save_ms = (t_end - t_start) / 1000.0;

                    server_task_result result;
                    result.id = task.id;
                    result.stop = true;
                    result.error = false;
                    result.data = json {
                        { "id_slot",   id_slot },
                        { "filename",  filename },
                        { "n_saved",   token_count }, // tokens saved
                        { "n_written", nwrite },      // bytes written
                        { "timings", {
                            { "save_ms", t_save_ms }
                        } }
                    };
                    queue_results.send(result);
                } break;
            case SERVER_TASK_TYPE_SLOT_RESTORE:
                {
                    int id_slot = task.data.at("id_slot");
                    server_slot * slot = get_slot_by_id(id_slot);
                    if (slot == nullptr) {
                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
                        break;
                    }
                    if (slot->is_processing()) {
                        // if requested slot is unavailable, we defer this task for processing later
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
                        queue_tasks.defer(task);
                        break;
                    }

                    const int64_t t_start = ggml_time_us();

                    std::string filename = task.data.at("filename");
                    std::string filepath = task.data.at("filepath");

                    slot->cache_tokens.resize(slot->n_ctx);
                    size_t token_count = 0;
                    size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
                    if (nread == 0) {
                        slot->cache_tokens.resize(0);
                        send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
                        break;
                    }
                    slot->cache_tokens.resize(token_count);

                    const int64_t t_end = ggml_time_us();
                    const double t_restore_ms = (t_end - t_start) / 1000.0;

                    server_task_result result;
                    result.id = task.id;
                    result.stop = true;
                    result.error = false;
                    result.data = json {
                        { "id_slot",    id_slot },
                        { "filename",   filename },
                        { "n_restored", token_count }, // tokens restored
                        { "n_read",     nread },       // bytes read
                        { "timings", {
                            { "restore_ms", t_restore_ms }
                        } }
                    };
                    queue_results.send(result);
                } break;
            case SERVER_TASK_TYPE_SLOT_ERASE:
                {
                    int id_slot = task.data.at("id_slot");
                    server_slot * slot = get_slot_by_id(id_slot);
                    if (slot == nullptr) {
                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
                        break;
                    }
                    if (slot->is_processing()) {
                        // if requested slot is unavailable, we defer this task for processing later
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
                        queue_tasks.defer(task);
                        break;
                    }

                    // Erase token cache
                    const size_t n_erased = slot->cache_tokens.size();
                    llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
                    slot->cache_tokens.clear();

                    server_task_result result;
                    result.id = task.id;
                    result.stop = true;
                    result.error = false;
                    result.data = json {
                        { "id_slot",  id_slot },
                        { "n_erased", n_erased }
                    };
                    queue_results.send(result);
                } break;
            case SERVER_TASK_TYPE_SET_LORA:
                {
                    common_lora_adapters_apply(ctx, loras);
                    server_task_result result;
                    result.id = task.id;
                    result.stop = true;
                    result.error = false;
                    result.data = json{{ "success", true }};
                    queue_results.send(result);
                } break;
        }
    }

    void update_slots() {
        // check if all slots are idle
        {
            bool all_idle = true;

            for (auto & slot : slots) {
                if (slot.is_processing()) {
                    all_idle = false;
                    break;
                }
            }

            if (all_idle) {
                SRV_INF("%s", "all slots are idle\n");
                if (clean_kv_cache) {
                    kv_cache_clear();
                }

                return;
            }
        }

        {
            SRV_DBG("%s", "posting NEXT_RESPONSE\n");

            server_task task;
            task.type      = SERVER_TASK_TYPE_NEXT_RESPONSE;
            task.id_target = -1;

            queue_tasks.post(task);
        }

        // apply context-shift if needed
        // TODO: simplify and improve
        for (server_slot & slot : slots) {
            if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
                if (!params_base.ctx_shift) {
                    // this check is redundant (for good)
                    // we should never get here, because generation should already stopped in process_token()
                    slot.release();
                    send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
                    continue;
                }

                // Shift context
                const int n_keep    = slot.params.n_keep + add_bos_token;
                const int n_left    = slot.n_past - n_keep;
                const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);

                SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);

                llama_kv_cache_seq_rm (ctx, slot.id, n_keep            , n_keep + n_discard);
                llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past,        -n_discard);

                if (slot.params.cache_prompt) {
                    for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
                        slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
                    }

                    slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
                }

                slot.n_past -= n_discard;

                slot.truncated = true;
            }
        }

        // start populating the batch for this iteration
        common_batch_clear(batch);

        // frist, add sampled tokens from any ongoing sequences
        for (auto & slot : slots) {
            if (slot.state != SLOT_STATE_GENERATING) {
                continue;
            }

            slot.i_batch = batch.n_tokens;

            common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);

            slot.n_past += 1;

            if (slot.params.cache_prompt) {
                slot.cache_tokens.push_back(slot.sampled);
            }

            SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
                    slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
        }

        // process in chunks of params.n_batch
        int32_t n_batch  = llama_n_batch(ctx);
        int32_t n_ubatch = llama_n_ubatch(ctx);

        // track if this is an embedding or non-embedding batch
        // if we've added sampled tokens above, we are in non-embedding mode
        // -1: none, 0: non-embedding, 1: embedding
        // TODO: make enum
        int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;

        // next, batch any pending prompts without exceeding n_batch
        if (params_base.cont_batching || batch.n_tokens == 0) {
            for (auto & slot : slots) {
                // this slot still has a prompt to be processed
                if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
                    auto & prompt_tokens = slot.prompt_tokens;

                    // TODO: maybe move branch to outside of this loop in the future
                    if (slot.state == SLOT_STATE_STARTED) {
                        slot.t_start_process_prompt = ggml_time_us();
                        slot.t_start_generation = 0;

                        slot.n_past = 0;
                        slot.n_prompt_tokens = prompt_tokens.size();
                        slot.state = SLOT_STATE_PROCESSING_PROMPT;

                        SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);

                        // print prompt tokens (for debugging)
                        if (1) {
                            // first 16 tokens (avoid flooding logs)
                            for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
                                SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
                            }
                        } else {
                            // all
                            for (int i = 0; i < (int) prompt_tokens.size(); i++) {
                                SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
                            }
                        }

                        // empty prompt passed -> release the slot and send empty response
                        if (prompt_tokens.empty()) {
                            SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");

                            slot.release();
                            slot.print_timings();
                            send_final_response(slot);
                            continue;
                        }

                        if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING || slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
                            if (slot.n_prompt_tokens > n_ubatch) {
                                slot.release();
                                send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
                                continue;
                            }

                            if (slot.n_prompt_tokens > slot.n_ctx) {
                                slot.release();
                                send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
                                continue;
                            }
                        } else {
                            if (!params_base.ctx_shift) {
                                // if context shift is disabled, we make sure prompt size is smaller than KV size
                                // TODO: there should be a separate parameter that control prompt truncation
                                //       context shift should be applied only during the generation phase
                                if (slot.n_prompt_tokens >= slot.n_ctx) {
                                    slot.release();
                                    send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
                                    continue;
                                }
                            }
                            if (slot.params.n_keep < 0) {
                                slot.params.n_keep = slot.n_prompt_tokens;
                            }
                            slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);

                            // if input prompt is too big, truncate it
                            if (slot.n_prompt_tokens >= slot.n_ctx) {
                                const int n_left = slot.n_ctx - slot.params.n_keep;

                                const int n_block_size = n_left / 2;
                                const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;

                                llama_tokens new_tokens(
                                        prompt_tokens.begin(),
                                        prompt_tokens.begin() + slot.params.n_keep);

                                new_tokens.insert(
                                        new_tokens.end(),
                                        prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
                                        prompt_tokens.end());

                                prompt_tokens = std::move(new_tokens);

                                slot.truncated = true;
                                slot.n_prompt_tokens = prompt_tokens.size();

                                SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);

                                GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
                            }

                            if (slot.params.cache_prompt) {
                                // reuse any previously computed tokens that are common with the new prompt
                                slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);

                                // reuse chunks from the cached prompt by shifting their KV cache in the new position
                                if (params_base.n_cache_reuse > 0) {
                                    size_t head_c = slot.n_past; // cache
                                    size_t head_p = slot.n_past; // current prompt

                                    SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);

                                    while (head_c < slot.cache_tokens.size() &&
                                           head_p < prompt_tokens.size()) {

                                        size_t n_match = 0;
                                        while (head_c + n_match < slot.cache_tokens.size() &&
                                               head_p + n_match < prompt_tokens.size()     &&
                                               slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {

                                            n_match++;
                                        }

                                        if (n_match >= (size_t) params_base.n_cache_reuse) {
                                            SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
                                            //for (size_t i = head_p; i < head_p + n_match; i++) {
                                            //    SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
                                            //}

                                            const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;

                                            llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
                                            llama_kv_cache_seq_add(ctx, slot.id, head_c, -1,     kv_shift);

                                            for (size_t i = 0; i < n_match; i++) {
                                                slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
                                                slot.n_past++;
                                            }

                                            head_c += n_match;
                                            head_p += n_match;
                                        } else {
                                            head_c += 1;
                                        }
                                    }

                                    SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
                                }
                            }
                        }

                        if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
                            // we have to evaluate at least 1 token to generate logits.
                            SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);

                            slot.n_past--;
                        }

                        slot.n_prompt_tokens_processed = 0;
                    }

                    // non-causal tasks require to fit the entire prompt in the physical batch
                    if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING || slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
                        // cannot fit the prompt in the current batch - will try next iter
                        if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
                            continue;
                        }
                    }

                    // check that we are in the right batch_type, if not defer the slot
                    const bool slot_type =
                        slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING ||
                        slot.inf_type == SERVER_TASK_INF_TYPE_RERANK     ? 1 : 0;

                    if (batch_type == -1) {
                        batch_type = slot_type;
                    } else if (batch_type != slot_type) {
                        continue;
                    }

                    // keep only the common part
                    if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
                        // could not partially delete (likely using a non-Transformer model)
                        llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);

                        // there is no common part left
                        slot.n_past = 0;
                    }

                    SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);

                    // remove the non-common part from the cache
                    slot.cache_tokens.resize(slot.n_past);

                    // add prompt tokens for processing in the current batch
                    while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
                        common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, false);

                        if (slot.params.cache_prompt) {
                            slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
                        }

                        slot.n_prompt_tokens_processed++;
                        slot.n_past++;
                    }

                    SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);

                    // entire prompt has been processed
                    if (slot.n_past == slot.n_prompt_tokens) {
                        slot.state = SLOT_STATE_DONE_PROMPT;

                        GGML_ASSERT(batch.n_tokens > 0);

                        common_sampler_reset(slot.smpl);

                        // Process all prompt tokens through sampler system
                        for (int i = 0; i < slot.n_prompt_tokens; ++i) {
                            common_sampler_accept(slot.smpl, prompt_tokens[i], false);
                        }

                        // extract the logits only for the last token
                        batch.logits[batch.n_tokens - 1] = true;

                        slot.n_decoded = 0;
                        slot.i_batch   = batch.n_tokens - 1;

                        SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
                    }
                }

                if (batch.n_tokens >= n_batch) {
                    break;
                }
            }
        }

        if (batch.n_tokens == 0) {
            SRV_WRN("%s", "no tokens to decode\n");
            return;
        }

        SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);

        // make sure we're in the right embedding mode
        llama_set_embeddings(ctx, batch_type == 1);

        // process the created batch of tokens
        for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
            const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);

            llama_batch batch_view = {
                n_tokens,
                batch.token    + i,
                nullptr,
                batch.pos      + i,
                batch.n_seq_id + i,
                batch.seq_id   + i,
                batch.logits   + i,
            };

            const int ret = llama_decode(ctx, batch_view);
            metrics.on_decoded(slots);

            if (ret != 0) {
                if (n_batch == 1 || ret < 0) {
                    // if you get here, it means the KV cache is full - try increasing it via the context size
                    SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
                    for (auto & slot : slots) {
                        slot.release();
                        send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
                    }
                    break; // break loop of n_batch
                }

                // retry with half the batch size to try to find a free slot in the KV cache
                n_batch /= 2;
                i -= n_batch;

                SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);

                continue; // continue loop of n_batch
            }

            for (auto & slot : slots) {
                if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
                    continue; // continue loop of slots
                }

                if (slot.state == SLOT_STATE_DONE_PROMPT) {
                    if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING) {
                        // prompt evaluated for embedding
                        send_embedding(slot, batch_view);
                        slot.release();
                        slot.i_batch = -1;
                        continue; // continue loop of slots
                    }

                    if (slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
                        send_rerank(slot, batch_view);
                        slot.release();
                        slot.i_batch = -1;
                        continue; // continue loop of slots
                    }

                    // prompt evaluated for next-token prediction
                    slot.state = SLOT_STATE_GENERATING;
                } else if (slot.state != SLOT_STATE_GENERATING) {
                    continue; // continue loop of slots
                }

                llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);

                slot.i_batch = -1;

                common_sampler_accept(slot.smpl, id, true);

                slot.n_decoded += 1;

                const int64_t t_current = ggml_time_us();

                if (slot.n_decoded == 1) {
                    slot.t_start_generation = t_current;
                    slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
                    metrics.on_prompt_eval(slot);
                }

                slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;

                completion_token_output result;
                result.tok = id;

                const auto * cur_p = common_sampler_get_candidates(slot.smpl);

                for (size_t i = 0; i < (size_t) slot.params.sampling.n_probs; ++i) {
                    result.probs.push_back({
                        cur_p->data[i].id,
                            i >= cur_p->size ? 0.0f : cur_p->data[i].p,
                    });
                }

                if (!process_token(result, slot)) {
                    // release slot because of stop condition
                    slot.release();
                    slot.print_timings();
                    send_final_response(slot);
                    metrics.on_prediction(slot);
                    continue;
                }
            }

            // do speculative decoding
            for (auto & slot : slots) {
                if (!slot.is_processing() || !slot.can_speculate()) {
                    continue;
                }

                if (slot.state != SLOT_STATE_GENERATING) {
                    continue;
                }

                llama_token id = slot.sampled;

                struct common_speculative_params params_spec;
                params_spec.n_draft   = slot.params.speculative.n_max;
                params_spec.n_reuse   = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
                params_spec.p_min     = slot.params.speculative.p_min;

                llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);

                // ignore small drafts
                if (slot.params.speculative.n_min > (int) draft.size()) {
                    continue;
                }

                // construct the speculation batch
                common_batch_clear(slot.batch_spec);
                common_batch_add  (slot.batch_spec, id, slot.n_past, { slot.id }, true);

                for (size_t i = 0; i < draft.size(); ++i) {
                    common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
                }

                llama_decode(ctx, slot.batch_spec);

                // the accepted tokens from the speculation
                const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);

                slot.n_past    += ids.size();
                slot.n_decoded += ids.size();

                slot.cache_tokens.push_back(id);
                slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);

                llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);

                for (size_t i = 0; i < ids.size(); ++i) {
                    completion_token_output result;

                    result.tok = ids[i];

                    if (!process_token(result, slot)) {
                        // release slot because of stop condition
                        slot.release();
                        slot.print_timings();
                        send_final_response(slot);
                        metrics.on_prediction(slot);
                        break;
                    }
                }

                SRV_DBG("accepted %d/%d draft tokens\n", (int) ids.size() - 1, (int) draft.size());
            }
        }

        SRV_DBG("%s", "run slots completed\n");
    }

    json model_meta() const {
        return json {
            {"vocab_type",  llama_vocab_type    (model)},
            {"n_vocab",     llama_n_vocab       (model)},
            {"n_ctx_train", llama_n_ctx_train   (model)},
            {"n_embd",      llama_n_embd        (model)},
            {"n_params",    llama_model_n_params(model)},
            {"size",        llama_model_size    (model)},
        };
    }
};

static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
    // skip GH copilot requests when using default port
    if (req.path == "/v1/health" || req.path == "/v1/completions") {
        return;
    }

    LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);

    LOG_DBG("request:  %s\n", req.body.c_str());
    LOG_DBG("response: %s\n", res.body.c_str());
}

std::function<void(int)> shutdown_handler;
std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;

inline void signal_handler(int signal) {
    if (is_terminating.test_and_set()) {
        // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
        // this is for better developer experience, we can remove when the server is stable enough
        fprintf(stderr, "Received second interrupt, terminating immediately.\n");
        exit(1);
    }

    shutdown_handler(signal);
}

int main(int argc, char ** argv) {
    // own arguments required by this example
    common_params params;

    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
        return 1;
    }

    common_init();

    // enabling this will output extra debug information in the HTTP responses from the server
    // see format_final_response_oaicompat()
    const bool verbose = params.verbosity > 9;

    // struct that contains llama context and inference
    server_context ctx_server;

    if (params.model_alias == "unknown") {
        params.model_alias = params.model;
    }

    llama_backend_init();
    llama_numa_init(params.numa);

    LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
    LOG_INF("\n");
    LOG_INF("%s\n", common_params_get_system_info(params).c_str());
    LOG_INF("\n");

    // static files
    std::map<std::string, server_static_file> static_files = {
        { "/",                        { index_html,              index_html_len,              "text/html; charset=utf-8" }},
        { "/completion.js",           { completion_js,           completion_js_len,           "text/javascript; charset=utf-8" }},
        { "/deps_daisyui.min.css",    { deps_daisyui_min_css,    deps_daisyui_min_css_len,    "text/css; charset=utf-8" }},
        { "/deps_markdown-it.js",     { deps_markdown_it_js,     deps_markdown_it_js_len,     "text/javascript; charset=utf-8" }},
        { "/deps_tailwindcss.js",     { deps_tailwindcss_js,     deps_tailwindcss_js_len,     "text/javascript; charset=utf-8" }},
        { "/deps_vue.esm-browser.js", { deps_vue_esm_browser_js, deps_vue_esm_browser_js_len, "text/javascript; charset=utf-8" }},
    };

    std::unique_ptr<httplib::Server> svr;
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
    if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
        LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
        svr.reset(
            new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
        );
    } else {
        LOG_INF("Running without SSL\n");
        svr.reset(new httplib::Server());
    }
#else
    if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
        LOG_ERR("Server is built without SSL support\n");
        return 1;
    }
    svr.reset(new httplib::Server());
#endif

    std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};

    svr->set_default_headers({{"Server", "llama.cpp"}});
    svr->set_logger(log_server_request);

    auto res_error = [](httplib::Response & res, const json & error_data) {
        json final_response {{"error", error_data}};
        res.set_content(final_response.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
        res.status = json_value(error_data, "code", 500);
    };

    auto res_ok = [](httplib::Response & res, const json & data) {
        res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
        res.status = 200;
    };

    svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) {
        std::string message;
        try {
            std::rethrow_exception(ep);
        } catch (std::exception & e) {
            message = e.what();
        } catch (...) {
            message = "Unknown Exception";
        }

        json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
        LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
        res_error(res, formatted_error);
    });

    svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
        if (res.status == 404) {
            res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
        }
        // for other error codes, we skip processing here because it's already done by res_error()
    });

    // set timeouts and change hostname and port
    svr->set_read_timeout (params.timeout_read);
    svr->set_write_timeout(params.timeout_write);

    std::unordered_map<std::string, std::string> log_data;

    log_data["hostname"] = params.hostname;
    log_data["port"]     = std::to_string(params.port);

    if (params.api_keys.size() == 1) {
        auto key = params.api_keys[0];
        log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
    } else if (params.api_keys.size() > 1) {
        log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
    }

    // Necessary similarity of prompt for slot selection
    ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;

    //
    // Middlewares
    //

    auto middleware_validate_api_key = [&params, &res_error, &static_files](const httplib::Request & req, httplib::Response & res) {
        static const std::unordered_set<std::string> public_endpoints = {
            "/health",
            "/models",
            "/v1/models",
        };

        // If API key is not set, skip validation
        if (params.api_keys.empty()) {
            return true;
        }

        // If path is public or is static file, skip validation
        if (public_endpoints.find(req.path) != public_endpoints.end() || static_files.find(req.path) != static_files.end()) {
            return true;
        }

        // Check for API key in the header
        auto auth_header = req.get_header_value("Authorization");

        std::string prefix = "Bearer ";
        if (auth_header.substr(0, prefix.size()) == prefix) {
            std::string received_api_key = auth_header.substr(prefix.size());
            if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
                return true; // API key is valid
            }
        }

        // API key is invalid or not provided
        res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));

        LOG_WRN("Unauthorized: Invalid API Key\n");

        return false;
    };

    auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
        server_state current_state = state.load();
        if (current_state == SERVER_STATE_LOADING_MODEL) {
            auto tmp = string_split<std::string>(req.path, '.');
            if (req.path == "/" || tmp.back() == "html") {
                res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
                res.status = 503;
            } else {
                res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
            }
            return false;
        }
        return true;
    };

    // register server middlewares
    svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
        res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
        // If this is OPTIONS request, skip validation because browsers don't include Authorization header
        if (req.method == "OPTIONS") {
            res.set_header("Access-Control-Allow-Credentials", "true");
            res.set_header("Access-Control-Allow-Methods",     "GET, POST");
            res.set_header("Access-Control-Allow-Headers",     "*");
            res.set_content("", "text/html"); // blank response, no data
            return httplib::Server::HandlerResponse::Handled; // skip further processing
        }
        if (!middleware_server_state(req, res)) {
            return httplib::Server::HandlerResponse::Handled;
        }
        if (!middleware_validate_api_key(req, res)) {
            return httplib::Server::HandlerResponse::Handled;
        }
        return httplib::Server::HandlerResponse::Unhandled;
    });

    //
    // Route handlers (or controllers)
    //

    const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
        // error and loading states are handled by middleware
        json health = {{"status", "ok"}};
        res_ok(res, health);
    };

    const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
        if (!params.endpoint_slots) {
            res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
            return;
        }

        // request slots data using task queue
        server_task task;
        task.id = ctx_server.queue_tasks.get_new_id();
        task.type = SERVER_TASK_TYPE_METRICS;

        ctx_server.queue_results.add_waiting_task_id(task.id);
        ctx_server.queue_tasks.post(task, true); // high-priority task

        // get the result
        server_task_result result = ctx_server.queue_results.recv(task.id);
        ctx_server.queue_results.remove_waiting_task_id(task.id);

        // optionally return "fail_on_no_slot" error
        const int n_idle_slots = result.data.at("idle");
        if (req.has_param("fail_on_no_slot")) {
            if (n_idle_slots == 0) {
                res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
                return;
            }
        }

        res_ok(res, result.data.at("slots"));
    };

    const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
        if (!params.endpoint_metrics) {
            res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
            return;
        }

        // request slots data using task queue
        server_task task;
        task.id = ctx_server.queue_tasks.get_new_id();
        task.id_target = -1;
        task.type = SERVER_TASK_TYPE_METRICS;
        task.data.push_back({{"reset_bucket", true}});

        ctx_server.queue_results.add_waiting_task_id(task.id);
        ctx_server.queue_tasks.post(task, true); // high-priority task

        // get the result
        server_task_result result = ctx_server.queue_results.recv(task.id);
        ctx_server.queue_results.remove_waiting_task_id(task.id);

        json data = result.data;

        const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed");
        const uint64_t t_prompt_processing       = data.at("t_prompt_processing");

        const uint64_t n_tokens_predicted  = data.at("n_tokens_predicted");
        const uint64_t t_tokens_generation = data.at("t_tokens_generation");

        const uint64_t n_decode_total     = data.at("n_decode_total");
        const uint64_t n_busy_slots_total = data.at("n_busy_slots_total");

        const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells");

        // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
        json all_metrics_def = json {
            {"counter", {{
                    {"name",  "prompt_tokens_total"},
                    {"help",  "Number of prompt tokens processed."},
                    {"value",  (uint64_t) data.at("n_prompt_tokens_processed_total")}
            }, {
                    {"name",  "prompt_seconds_total"},
                    {"help",  "Prompt process time"},
                    {"value",  (uint64_t) data.at("t_prompt_processing_total") / 1.e3}
            }, {
                    {"name",  "tokens_predicted_total"},
                    {"help",  "Number of generation tokens processed."},
                    {"value",  (uint64_t) data.at("n_tokens_predicted_total")}
            }, {
                    {"name",  "tokens_predicted_seconds_total"},
                    {"help",  "Predict process time"},
                    {"value",  (uint64_t) data.at("t_tokens_generation_total") / 1.e3}
            }, {
                    {"name",  "n_decode_total"},
                    {"help",  "Total number of llama_decode() calls"},
                    {"value",  n_decode_total}
            }, {
                    {"name",  "n_busy_slots_per_decode"},
                    {"help",  "Average number of busy slots per llama_decode() call"},
                    {"value",  (float) n_busy_slots_total / (float) n_decode_total}
            }}},
            {"gauge", {{
                    {"name",  "prompt_tokens_seconds"},
                    {"help",  "Average prompt throughput in tokens/s."},
                    {"value",  n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.}
            },{
                    {"name",  "predicted_tokens_seconds"},
                    {"help",  "Average generation throughput in tokens/s."},
                    {"value",  n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.}
            },{
                    {"name",  "kv_cache_usage_ratio"},
                    {"help",  "KV-cache usage. 1 means 100 percent usage."},
                    {"value",  1. * kv_cache_used_cells / params.n_ctx}
            },{
                    {"name",  "kv_cache_tokens"},
                    {"help",  "KV-cache tokens."},
                    {"value",  (uint64_t) data.at("kv_cache_tokens_count")}
            },{
                    {"name",  "requests_processing"},
                    {"help",  "Number of request processing."},
                    {"value",  (uint64_t) data.at("processing")}
            },{
                    {"name",  "requests_deferred"},
                    {"help",  "Number of request deferred."},
                    {"value",  (uint64_t) data.at("deferred")}
            }}}
        };

        std::stringstream prometheus;

        for (const auto & el : all_metrics_def.items()) {
            const auto & type        = el.key();
            const auto & metrics_def = el.value();

            for (const auto & metric_def : metrics_def) {
                const std::string name = metric_def.at("name");
                const std::string help = metric_def.at("help");

                auto value = json_value(metric_def, "value", 0.);
                prometheus << "# HELP llamacpp:" << name << " " << help  << "\n"
                            << "# TYPE llamacpp:" << name << " " << type  << "\n"
                            << "llamacpp:"        << name << " " << value << "\n";
            }
        }

        const int64_t t_start = data.at("t_start");
        res.set_header("Process-Start-Time-Unix", std::to_string(t_start));

        res.set_content(prometheus.str(), "text/plain; version=0.0.4");
        res.status = 200; // HTTP OK
    };

    const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
        json request_data = json::parse(req.body);
        std::string filename = request_data.at("filename");
        if (!fs_validate_filename(filename)) {
            res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
            return;
        }
        std::string filepath = params.slot_save_path + filename;

        server_task task;
        task.type = SERVER_TASK_TYPE_SLOT_SAVE;
        task.data = {
            { "id_slot", id_slot },
            { "filename", filename },
            { "filepath", filepath },
        };

        const int id_task = ctx_server.queue_tasks.post(task);
        ctx_server.queue_results.add_waiting_task_id(id_task);

        server_task_result result = ctx_server.queue_results.recv(id_task);
        ctx_server.queue_results.remove_waiting_task_id(id_task);

        if (result.error) {
            res_error(res, result.data);
        } else {
            res_ok(res, result.data);
        }
    };

    const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
        json request_data = json::parse(req.body);
        std::string filename = request_data.at("filename");
        if (!fs_validate_filename(filename)) {
            res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
            return;
        }
        std::string filepath = params.slot_save_path + filename;

        server_task task;
        task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
        task.data = {
            { "id_slot", id_slot },
            { "filename", filename },
            { "filepath", filepath },
        };

        const int id_task = ctx_server.queue_tasks.post(task);
        ctx_server.queue_results.add_waiting_task_id(id_task);

        server_task_result result = ctx_server.queue_results.recv(id_task);
        ctx_server.queue_results.remove_waiting_task_id(id_task);

        if (result.error) {
            res_error(res, result.data);
        } else {
            res_ok(res, result.data);
        }
    };

    const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
        server_task task;
        task.type = SERVER_TASK_TYPE_SLOT_ERASE;
        task.data = {
            { "id_slot", id_slot },
        };

        const int id_task = ctx_server.queue_tasks.post(task);
        ctx_server.queue_results.add_waiting_task_id(id_task);

        server_task_result result = ctx_server.queue_results.recv(id_task);
        ctx_server.queue_results.remove_waiting_task_id(id_task);

        if (result.error) {
            res_error(res, result.data);
        } else {
            res_ok(res, result.data);
        }
    };

    const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
        if (params.slot_save_path.empty()) {
            res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
            return;
        }

        std::string id_slot_str = req.path_params.at("id_slot");
        int id_slot;

        try {
            id_slot = std::stoi(id_slot_str);
        } catch (const std::exception &) {
            res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
            return;
        }

        std::string action = req.get_param_value("action");

        if (action == "save") {
            handle_slots_save(req, res, id_slot);
        } else if (action == "restore") {
            handle_slots_restore(req, res, id_slot);
        } else if (action == "erase") {
            handle_slots_erase(req, res, id_slot);
        } else {
            res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
        }
    };

    const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
        json data = {
            { "default_generation_settings", ctx_server.default_generation_settings_for_props },
            { "total_slots",                 ctx_server.params_base.n_parallel },
            { "chat_template",               llama_get_chat_template(ctx_server.model) },
        };

        res_ok(res, data);
    };

    const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
        if (!ctx_server.params_base.endpoint_props) {
            res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
            return;
        }

        json data = json::parse(req.body);

        // update any props here

        res_ok(res, {{ "success", true }});
    };

    const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](server_task_inf_type inf_type, json & data, httplib::Response & res) {
        if (ctx_server.params_base.embedding) {
            res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
            return;
        }

        std::vector<server_task> tasks = ctx_server.create_tasks_inference(data, inf_type);
        ctx_server.queue_results.add_waiting_tasks(tasks);
        ctx_server.queue_tasks.post(tasks);

        bool stream = json_value(data, "stream", false);
        const auto task_ids = server_task::get_list_id(tasks);

        if (!stream) {
            ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
                if (results.size() == 1) {
                    // single result
                    res_ok(res, results[0].data);
                } else {
                    // multiple results (multitask)
                    json arr = json::array();
                    for (const auto & res : results) {
                        arr.push_back(res.data);
                    }
                    res_ok(res, arr);
                }
            }, [&](const json & error_data) {
                res_error(res, error_data);
            });

            ctx_server.queue_results.remove_waiting_task_ids(task_ids);
        } else {
            const auto chunked_content_provider = [task_ids, &ctx_server](size_t, httplib::DataSink & sink) {
                ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool {
                    return server_sent_event(sink, "data", result.data);
                }, [&](const json & error_data) {
                    server_sent_event(sink, "error", error_data);
                });
                sink.done();
                return false;
            };

            auto on_complete = [task_ids, &ctx_server] (bool) {
                ctx_server.queue_results.remove_waiting_task_ids(task_ids);
            };

            res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
        }
    };

    const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
        json data = json::parse(req.body);
        return handle_completions_generic(SERVER_TASK_INF_TYPE_COMPLETION, data, res);
    };

    const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
        // check model compatibility
        std::string err;
        if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
            err += "prefix token is missing. ";
        }
        if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
            err += "suffix token is missing. ";
        }
        if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
            err += "middle token is missing. ";
        }
        if (!err.empty()) {
            res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
            return;
        }

        json data = json::parse(req.body);

        // validate input
        if (!data.contains("input_prefix")) {
            res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
        }

        if (!data.contains("input_suffix")) {
            res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
        }

        if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
            res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
            return;
        }
        json input_extra = json_value(data, "input_extra", json::array());
        for (const auto & chunk : input_extra) {
            // { "text": string, "filename": string }
            if (!chunk.contains("text") || !chunk.at("text").is_string()) {
                res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
                return;
            }
            // filename is optional
            if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
                res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
                return;
            }
        }
        data["input_extra"] = input_extra; // default to empty array if it's not exist

        return handle_completions_generic(SERVER_TASK_INF_TYPE_INFILL, data, res);
    };

    // TODO: maybe merge this function with "handle_completions_generic"
    const auto handle_chat_completions = [&ctx_server, &params, &res_error, &res_ok, verbose](const httplib::Request & req, httplib::Response & res) {
        if (ctx_server.params_base.embedding) {
            res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
            return;
        }

        json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);

        std::vector<server_task> tasks = ctx_server.create_tasks_inference(data, SERVER_TASK_INF_TYPE_COMPLETION);
        ctx_server.queue_results.add_waiting_tasks(tasks);
        ctx_server.queue_tasks.post(tasks);

        bool stream = json_value(data, "stream", false);
        const auto task_ids = server_task::get_list_id(tasks);
        const auto completion_id = gen_chatcmplid();

        if (!stream) {
            ctx_server.receive_cmpl_results(task_ids, [&](const std::vector<server_task_result> & results) {
                // multitask is never support in chat completion, there is only one result
                json result_oai = format_final_response_oaicompat(data, results[0].data, completion_id, /*.streaming =*/ false, verbose);
                res_ok(res, result_oai);
            }, [&](const json & error_data) {
                res_error(res, error_data);
            });

            ctx_server.queue_results.remove_waiting_task_ids(task_ids);
        } else {
            const auto chunked_content_provider = [task_ids, &ctx_server, completion_id](size_t, httplib::DataSink & sink) {
                ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool {
                    std::vector<json> result_array = format_partial_response_oaicompat(result.data, completion_id);
                    for (auto & event_data : result_array) {
                        if (event_data.empty()) {
                            continue; // skip the stop token
                        }
                        if (!server_sent_event(sink, "data", event_data)) {
                            return false; // connection is closed
                        }
                    }
                    return true; // ok
                }, [&](const json & error_data) {
                    server_sent_event(sink, "error", error_data);
                });
                static const std::string ev_done = "data: [DONE]\n\n";
                sink.write(ev_done.data(), ev_done.size());
                sink.done();
                return true;
            };

            auto on_complete = [task_ids, &ctx_server] (bool) {
                ctx_server.queue_results.remove_waiting_task_ids(task_ids);
            };

            res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
        }
    };

    const auto handle_models = [&params, &ctx_server](const httplib::Request &, httplib::Response & res) {
        json models = {
            {"object", "list"},
            {"data", {
                {
                    {"id",       params.model_alias},
                    {"object",   "model"},
                    {"created",  std::time(0)},
                    {"owned_by", "llamacpp"},
                    {"meta",     ctx_server.model_meta()}
                },
             }}
        };

        res.set_content(models.dump(), MIMETYPE_JSON);
    };

    const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
        const json body = json::parse(req.body);

        json tokens_response = json::array();
        if (body.count("content") != 0) {
            const bool add_special = json_value(body, "add_special", false);
            const bool with_pieces = json_value(body, "with_pieces", false);

            llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);

            if (with_pieces) {
                for (const auto& token : tokens) {
                    std::string piece = common_token_to_piece(ctx_server.ctx, token);
                    json piece_json;

                    // Check if the piece is valid UTF-8
                    if (is_valid_utf8(piece)) {
                        piece_json = piece;
                    } else {
                        // If not valid UTF-8, store as array of byte values
                        piece_json = json::array();
                        for (unsigned char c : piece) {
                            piece_json.push_back(static_cast<int>(c));
                        }
                    }

                    tokens_response.push_back({
                        {"id", token},
                        {"piece", piece_json}
                    });
                }
            } else {
                tokens_response = tokens;
            }
        }

        const json data = format_tokenizer_response(tokens_response);
        res_ok(res, data);
    };

    const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
        const json body = json::parse(req.body);

        std::string content;
        if (body.count("tokens") != 0) {
            const llama_tokens tokens = body.at("tokens");
            content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
        }

        const json data = format_detokenized_response(content);
        res_ok(res, data);
    };

    const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
        const json body = json::parse(req.body);
        bool is_openai = false;

        // an input prompt can be a string or a list of tokens (integer)
        json prompt;
        if (body.count("input") != 0) {
            is_openai = true;
            prompt = body.at("input");
        } else if (body.count("content") != 0) {
            // with "content", we only support single prompt
            prompt = std::vector<std::string>{body.at("content")};
        } else {
            res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
            return;
        }

        // create and queue the task
        json responses = json::array();
        bool error = false;
        {
            std::vector<server_task> tasks = ctx_server.create_tasks_inference({{"prompt", prompt}}, SERVER_TASK_INF_TYPE_EMBEDDING);
            ctx_server.queue_results.add_waiting_tasks(tasks);
            ctx_server.queue_tasks.post(tasks);

            // get the result
            std::unordered_set<int> task_ids = server_task::get_list_id(tasks);

            ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
                for (const auto & res : results) {
                    responses.push_back(res.data);
                }
            }, [&](const json & error_data) {
                res_error(res, error_data);
                error = true;
            });

            ctx_server.queue_results.remove_waiting_task_ids(task_ids);
        }

        if (error) {
            return;
        }

        // write JSON response
        json root = is_openai
            ? format_embeddings_response_oaicompat(body, responses)
            : responses[0];
        res_ok(res, root);
    };

    const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
        if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
            res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
            return;
        }

        const json body = json::parse(req.body);

        // TODO: implement
        //int top_n = 1;
        //if (body.count("top_n") != 1) {
        //    top_n = body.at("top_n");
        //} else {
        //    res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
        //    return;
        //}

        json query;
        if (body.count("query") == 1) {
            query = body.at("query");
            if (!query.is_string()) {
                res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
                return;
            }
        } else {
            res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
            return;
        }

        std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
        if (documents.empty()) {
            res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
            return;
        }

        // construct prompt object: array of ["query", "doc0", "doc1", ...]
        json prompt;
        prompt.push_back(query);
        for (const auto & doc : documents) {
            prompt.push_back(doc);
        }

        LOG_DBG("rerank prompt: %s\n", prompt.dump().c_str());

        // create and queue the task
        json responses = json::array();
        bool error = false;
        {
            std::vector<server_task> tasks = ctx_server.create_tasks_inference({{"prompt", prompt}}, SERVER_TASK_INF_TYPE_RERANK);
            ctx_server.queue_results.add_waiting_tasks(tasks);
            ctx_server.queue_tasks.post(tasks);

            // get the result
            std::unordered_set<int> task_ids = server_task::get_list_id(tasks);

            ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
                for (const auto & res : results) {
                    responses.push_back(res.data);
                }
            }, [&](const json & error_data) {
                res_error(res, error_data);
                error = true;
            });
        }

        if (error) {
            return;
        }

        // write JSON response
        json root = format_response_rerank(body, responses);
        res_ok(res, root);
    };

    const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
        json result = json::array();
        for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
            auto & lora = ctx_server.loras[i];
            result.push_back({
                {"id", i},
                {"path", lora.path},
                {"scale", lora.scale},
            });
        }
        res_ok(res, result);
        res.status = 200; // HTTP OK
    };

    const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
        const std::vector<json> body = json::parse(req.body);
        int max_idx = ctx_server.loras.size();

        // clear existing value
        for (auto & lora : ctx_server.loras) {
            lora.scale = 0.0f;
        }

        // set value
        for (auto entry : body) {
            int id      = entry.at("id");
            float scale = entry.at("scale");
            if (0 <= id && id < max_idx) {
                ctx_server.loras[id].scale = scale;
            } else {
                throw std::runtime_error("invalid adapter id");
            }
        }

        server_task task;
        task.type = SERVER_TASK_TYPE_SET_LORA;
        const int id_task = ctx_server.queue_tasks.post(task);
        ctx_server.queue_results.add_waiting_task_id(id_task);

        server_task_result result = ctx_server.queue_results.recv(id_task);
        ctx_server.queue_results.remove_waiting_task_id(id_task);

        res_ok(res, result.data);
        res.status = 200; // HTTP OK
    };

    //
    // Router
    //

    // register static assets routes
    if (!params.public_path.empty()) {
        // Set the base directory for serving static files
        bool is_found = svr->set_mount_point("/", params.public_path);
        if (!is_found) {
            LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
            return 1;
        }
    } else {
        // using embedded static files
        for (const auto & it : static_files) {
            const server_static_file & static_file = it.second;
            svr->Get(it.first.c_str(), [&static_file](const httplib::Request &, httplib::Response & res) {
                res.set_content(reinterpret_cast<const char*>(static_file.data), static_file.size, static_file.mime_type);
                return false;
            });
        }
    }

    // register API routes
    svr->Get ("/health",              handle_health); // public endpoint (no API key check)
    svr->Get ("/metrics",             handle_metrics);
    svr->Get ("/props",               handle_props);
    svr->Post("/props",               handle_props_change);
    svr->Get ("/models",              handle_models); // public endpoint (no API key check)
    svr->Get ("/v1/models",           handle_models); // public endpoint (no API key check)
    svr->Post("/completion",          handle_completions); // legacy
    svr->Post("/completions",         handle_completions);
    svr->Post("/v1/completions",      handle_completions);
    svr->Post("/chat/completions",    handle_chat_completions);
    svr->Post("/v1/chat/completions", handle_chat_completions);
    svr->Post("/infill",              handle_infill);
    svr->Post("/embedding",           handle_embeddings); // legacy
    svr->Post("/embeddings",          handle_embeddings);
    svr->Post("/v1/embeddings",       handle_embeddings);
    svr->Post("/rerank",              handle_rerank);
    svr->Post("/reranking",           handle_rerank);
    svr->Post("/v1/rerank",           handle_rerank);
    svr->Post("/v1/reranking",        handle_rerank);
    svr->Post("/tokenize",            handle_tokenize);
    svr->Post("/detokenize",          handle_detokenize);
    // LoRA adapters hotswap
    svr->Get ("/lora-adapters",       handle_lora_adapters_list);
    svr->Post("/lora-adapters",       handle_lora_adapters_apply);
    // Save & load slots
    svr->Get ("/slots",               handle_slots);
    svr->Post("/slots/:id_slot",      handle_slots_action);

    //
    // Start the server
    //
    if (params.n_threads_http < 1) {
        // +2 threads for monitoring endpoints
        params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
    }
    log_data["n_threads_http"] =  std::to_string(params.n_threads_http);
    svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };

    // clean up function, to be called before exit
    auto clean_up = [&svr]() {
        svr->stop();
        llama_backend_free();
    };

    // bind HTTP listen port
    bool was_bound = false;
    if (params.port == 0) {
        int bound_port = svr->bind_to_any_port(params.hostname);
        if ((was_bound = (bound_port >= 0))) {
            params.port = bound_port;
        }
    } else {
        was_bound = svr->bind_to_port(params.hostname, params.port);
    }

    if (!was_bound) {
        //LOG_ERROR("couldn't bind HTTP server socket", {
        //    {"hostname", params.hostname},
        //    {"port", params.port},
        //});
        LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
        clean_up();
        return 1;
    }

    // run the HTTP server in a thread
    std::thread t([&]() { svr->listen_after_bind(); });
    svr->wait_until_ready();

    LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);

    // load the model
    LOG_INF("%s: loading model\n", __func__);

    if (!ctx_server.load_model(params)) {
        clean_up();
        t.join();
        LOG_ERR("%s: exiting due to model loading error\n", __func__);
        return 1;
    }

    ctx_server.init();
    state.store(SERVER_STATE_READY);

    LOG_INF("%s: model loaded\n", __func__);

    // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
    if (params.chat_template.empty()) {
        if (!ctx_server.validate_model_chat_template()) {
            LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
            params.chat_template = "chatml";
        }
    }

    // print sample chat example to make it clear which template is used
    LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());

    ctx_server.queue_tasks.on_new_task(std::bind(
                &server_context::process_single_task, &ctx_server, std::placeholders::_1));

    ctx_server.queue_tasks.on_update_slots(std::bind(
                &server_context::update_slots, &ctx_server));

    shutdown_handler = [&](int) {
        ctx_server.queue_tasks.terminate();
    };

    LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);

    ctx_server.queue_tasks.start_loop();

#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
    struct sigaction sigint_action;
    sigint_action.sa_handler = signal_handler;
    sigemptyset (&sigint_action.sa_mask);
    sigint_action.sa_flags = 0;
    sigaction(SIGINT, &sigint_action, NULL);
    sigaction(SIGTERM, &sigint_action, NULL);
#elif defined (_WIN32)
    auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
        return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
    };
    SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif

    clean_up();
    t.join();

    return 0;
}