File size: 12,279 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# type: ignore[reportUnusedImport]

import subprocess
import os
import re
import json
import sys
import requests
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import (
    Any,
    Callable,
    ContextManager,
    Iterable,
    Iterator,
    List,
    Literal,
    Tuple,
    Set,
)
from re import RegexFlag


class ServerResponse:
    headers: dict
    status_code: int
    body: dict | Any


class ServerProcess:
    # default options
    debug: bool = False
    server_port: int = 8080
    server_host: str = "127.0.0.1"
    model_hf_repo: str = "ggml-org/models"
    model_hf_file: str = "tinyllamas/stories260K.gguf"
    model_alias: str = "tinyllama-2"
    temperature: float = 0.8
    seed: int = 42

    # custom options
    model_alias: str | None = None
    model_url: str | None = None
    model_file: str | None = None
    model_draft: str | None = None
    n_threads: int | None = None
    n_gpu_layer: int | None = None
    n_batch: int | None = None
    n_ubatch: int | None = None
    n_ctx: int | None = None
    n_ga: int | None = None
    n_ga_w: int | None = None
    n_predict: int | None = None
    n_prompts: int | None = 0
    slot_save_path: str | None = None
    id_slot: int | None = None
    cache_prompt: bool | None = None
    n_slots: int | None = None
    server_continuous_batching: bool | None = False
    server_embeddings: bool | None = False
    server_reranking: bool | None = False
    server_metrics: bool | None = False
    draft: int | None = None
    api_key: str | None = None
    response_format: str | None = None
    lora_files: List[str] | None = None
    disable_ctx_shift: int | None = False
    draft_min: int | None = None
    draft_max: int | None = None

    # session variables
    process: subprocess.Popen | None = None

    def __init__(self):
        if "N_GPU_LAYERS" in os.environ:
            self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
        if "DEBUG" in os.environ:
            self.debug = True
        if "PORT" in os.environ:
            self.server_port = int(os.environ["PORT"])

    def start(self, timeout_seconds: int = 10) -> None:
        if "LLAMA_SERVER_BIN_PATH" in os.environ:
            server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
        elif os.name == "nt":
            server_path = "../../../build/bin/Release/llama-server.exe"
        else:
            server_path = "../../../build/bin/llama-server"
        server_args = [
            "--slots",  # requires to get slot status via /slots endpoint
            "--host",
            self.server_host,
            "--port",
            self.server_port,
            "--temp",
            self.temperature,
            "--seed",
            self.seed,
        ]
        if self.model_file:
            server_args.extend(["--model", self.model_file])
        if self.model_url:
            server_args.extend(["--model-url", self.model_url])
        if self.model_draft:
            server_args.extend(["--model-draft", self.model_draft])
        if self.model_hf_repo:
            server_args.extend(["--hf-repo", self.model_hf_repo])
        if self.model_hf_file:
            server_args.extend(["--hf-file", self.model_hf_file])
        if self.n_batch:
            server_args.extend(["--batch-size", self.n_batch])
        if self.n_ubatch:
            server_args.extend(["--ubatch-size", self.n_ubatch])
        if self.n_threads:
            server_args.extend(["--threads", self.n_threads])
        if self.n_gpu_layer:
            server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
        if self.draft is not None:
            server_args.extend(["--draft", self.draft])
        if self.server_continuous_batching:
            server_args.append("--cont-batching")
        if self.server_embeddings:
            server_args.append("--embedding")
        if self.server_reranking:
            server_args.append("--reranking")
        if self.server_metrics:
            server_args.append("--metrics")
        if self.model_alias:
            server_args.extend(["--alias", self.model_alias])
        if self.n_ctx:
            server_args.extend(["--ctx-size", self.n_ctx])
        if self.n_slots:
            server_args.extend(["--parallel", self.n_slots])
        if self.n_predict:
            server_args.extend(["--n-predict", self.n_predict])
        if self.slot_save_path:
            server_args.extend(["--slot-save-path", self.slot_save_path])
        if self.n_ga:
            server_args.extend(["--grp-attn-n", self.n_ga])
        if self.n_ga_w:
            server_args.extend(["--grp-attn-w", self.n_ga_w])
        if self.debug:
            server_args.append("--verbose")
        if self.lora_files:
            for lora_file in self.lora_files:
                server_args.extend(["--lora", lora_file])
        if self.disable_ctx_shift:
            server_args.extend(["--no-context-shift"])
        if self.api_key:
            server_args.extend(["--api-key", self.api_key])
        if self.draft_max:
            server_args.extend(["--draft-max", self.draft_max])
        if self.draft_min:
            server_args.extend(["--draft-min", self.draft_min])

        args = [str(arg) for arg in [server_path, *server_args]]
        print(f"bench: starting server with: {' '.join(args)}")

        flags = 0
        if "nt" == os.name:
            flags |= subprocess.DETACHED_PROCESS
            flags |= subprocess.CREATE_NEW_PROCESS_GROUP
            flags |= subprocess.CREATE_NO_WINDOW

        self.process = subprocess.Popen(
            [str(arg) for arg in [server_path, *server_args]],
            creationflags=flags,
            stdout=sys.stdout,
            stderr=sys.stdout,
            env={**os.environ, "LLAMA_CACHE": "tmp"},
        )
        server_instances.add(self)

        print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")

        # wait for server to start
        start_time = time.time()
        while time.time() - start_time < timeout_seconds:
            try:
                response = self.make_request("GET", "/slots", headers={
                    "Authorization": f"Bearer {self.api_key}" if self.api_key else None
                })
                if response.status_code == 200:
                    self.ready = True
                    return  # server is ready
            except Exception as e:
                pass
            print(f"Waiting for server to start...")
            time.sleep(0.5)
        raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")

    def stop(self) -> None:
        if self in server_instances:
            server_instances.remove(self)
        if self.process:
            print(f"Stopping server with pid={self.process.pid}")
            self.process.kill()
            self.process = None

    def make_request(
        self,
        method: str,
        path: str,
        data: dict | Any | None = None,
        headers: dict | None = None,
    ) -> ServerResponse:
        url = f"http://{self.server_host}:{self.server_port}{path}"
        parse_body = False
        if method == "GET":
            response = requests.get(url, headers=headers)
            parse_body = True
        elif method == "POST":
            response = requests.post(url, headers=headers, json=data)
            parse_body = True
        elif method == "OPTIONS":
            response = requests.options(url, headers=headers)
        else:
            raise ValueError(f"Unimplemented method: {method}")
        result = ServerResponse()
        result.headers = dict(response.headers)
        result.status_code = response.status_code
        result.body = response.json() if parse_body else None
        print("Response from server", result.body)
        return result

    def make_stream_request(
        self,
        method: str,
        path: str,
        data: dict | None = None,
        headers: dict | None = None,
    ) -> Iterator[dict]:
        url = f"http://{self.server_host}:{self.server_port}{path}"
        if method == "POST":
            response = requests.post(url, headers=headers, json=data, stream=True)
        else:
            raise ValueError(f"Unimplemented method: {method}")
        for line_bytes in response.iter_lines():
            line = line_bytes.decode("utf-8")
            if '[DONE]' in line:
                break
            elif line.startswith('data: '):
                data = json.loads(line[6:])
                print("Partial response from server", data)
                yield data


server_instances: Set[ServerProcess] = set()


class ServerPreset:
    @staticmethod
    def tinyllama2() -> ServerProcess:
        server = ServerProcess()
        server.model_hf_repo = "ggml-org/models"
        server.model_hf_file = "tinyllamas/stories260K.gguf"
        server.model_alias = "tinyllama-2"
        server.n_ctx = 256
        server.n_batch = 32
        server.n_slots = 2
        server.n_predict = 64
        server.seed = 42
        return server

    @staticmethod
    def bert_bge_small() -> ServerProcess:
        server = ServerProcess()
        server.model_hf_repo = "ggml-org/models"
        server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
        server.model_alias = "bert-bge-small"
        server.n_ctx = 512
        server.n_batch = 128
        server.n_ubatch = 128
        server.n_slots = 2
        server.seed = 42
        server.server_embeddings = True
        return server

    @staticmethod
    def tinyllama_infill() -> ServerProcess:
        server = ServerProcess()
        server.model_hf_repo = "ggml-org/models"
        server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
        server.model_alias = "tinyllama-infill"
        server.n_ctx = 2048
        server.n_batch = 1024
        server.n_slots = 1
        server.n_predict = 64
        server.temperature = 0.0
        server.seed = 42
        return server

    @staticmethod
    def stories15m_moe() -> ServerProcess:
        server = ServerProcess()
        server.model_hf_repo = "ggml-org/stories15M_MOE"
        server.model_hf_file = "stories15M_MOE-F16.gguf"
        server.model_alias = "stories15m-moe"
        server.n_ctx = 2048
        server.n_batch = 1024
        server.n_slots = 1
        server.n_predict = 64
        server.temperature = 0.0
        server.seed = 42
        return server

    @staticmethod
    def jina_reranker_tiny() -> ServerProcess:
        server = ServerProcess()
        server.model_hf_repo = "ggml-org/models"
        server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
        server.model_alias = "jina-reranker"
        server.n_ctx = 512
        server.n_batch = 512
        server.n_slots = 1
        server.seed = 42
        server.server_reranking = True
        return server


def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
    """
    Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.

    Example usage:

    results = parallel_function_calls([
        (func1, (arg1, arg2)),
        (func2, (arg3, arg4)),
    ])
    """
    results = [None] * len(function_list)
    exceptions = []

    def worker(index, func, args):
        try:
            result = func(*args)
            results[index] = result
        except Exception as e:
            exceptions.append((index, str(e)))

    with ThreadPoolExecutor() as executor:
        futures = []
        for i, (func, args) in enumerate(function_list):
            future = executor.submit(worker, i, func, args)
            futures.append(future)

        # Wait for all futures to complete
        for future in as_completed(futures):
            pass

    # Check if there were any exceptions
    if exceptions:
        print("Exceptions occurred:")
        for index, error in exceptions:
            print(f"Function at index {index}: {error}")

    return results


def match_regex(regex: str, text: str) -> bool:
    return (
        re.compile(
            regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
        ).search(text)
        is not None
    )