File size: 8,628 Bytes
b664585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
#include "arg.h"
#include "common.h"
#include "sampling.h"
#include "speculative.h"
#include "log.h"
#include "llama.h"
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
int main(int argc, char ** argv) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
return 1;
}
if (params.n_predict < -1) {
LOG_ERR("%s: --n-predict must be >= -1\n", __func__);
return 1;
}
common_init();
if (params.speculative.model.empty()) {
LOG_ERR("%s: --model-draft is required\n", __func__);
return 1;
}
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model_tgt = NULL;
llama_model * model_dft = NULL;
llama_context * ctx_tgt = NULL;
llama_context * ctx_dft = NULL;
// load the target model
common_init_result llama_init_tgt = common_init_from_params(params);
model_tgt = llama_init_tgt.model;
ctx_tgt = llama_init_tgt.context;
// load the draft model
params.devices = params.speculative.devices;
params.model = params.speculative.model;
params.n_ctx = params.speculative.n_ctx;
params.n_batch = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch;
params.n_gpu_layers = params.speculative.n_gpu_layers;
if (params.speculative.cpuparams.n_threads > 0) {
params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
}
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
common_init_result llama_init_dft = common_init_from_params(params);
model_dft = llama_init_dft.model;
ctx_dft = llama_init_dft.context;
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
return 1;
}
// Tokenize the prompt
std::vector<llama_token> inp;
inp = common_tokenize(ctx_tgt, params.prompt, true, true);
if (llama_n_ctx(ctx_tgt) < (uint32_t) inp.size()) {
LOG_ERR("%s: the prompt exceeds the context size (%d tokens, ctx %d)\n", __func__, (int) inp.size(), llama_n_ctx(ctx_tgt));
return 1;
}
if (llama_n_batch(ctx_tgt) < (uint32_t) inp.size()) {
LOG_ERR("%s: the prompt exceeds the batch size (%d tokens, batch %d)\n", __func__, (int) inp.size(), llama_n_batch(ctx_tgt));
return 1;
}
LOG("\n\n");
for (auto id : inp) {
LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
}
// how many tokens to draft each time
int n_draft = params.speculative.n_max;
int n_draft_min = params.speculative.n_min;
float p_min = params.speculative.p_min;
int n_predict = 0;
int n_drafted = 0;
int n_accept = 0;
// used to determine end of generation
bool has_eos = false;
// ================================================
// everything until here is standard initialization
// the relevant stuff for speculative decoding starts here
const auto t_enc_start = ggml_time_us();
// target model sampling context
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
// eval the prompt
llama_decode(ctx_tgt, llama_batch_get_one(inp.data(), inp.size() - 1));
// note: keep the last token separate!
llama_token id_last = inp.back();
// all tokens currently in the target context
llama_tokens prompt_tgt(inp.begin(), inp.end() - 1);
prompt_tgt.reserve(llama_n_ctx(ctx_tgt));
int n_past = inp.size() - 1;
// init the speculator
struct common_speculative_params params_spec;
params_spec.n_draft = n_draft;
params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft;
params_spec.p_min = p_min;
struct common_speculative * spec = common_speculative_init(ctx_dft);
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
const auto t_enc_end = ggml_time_us();
const auto t_dec_start = ggml_time_us();
while (true) {
// optionally, generate draft tokens that can be appended to the target batch
//
// this is the most important part of the speculation. the more probable tokens that are provided here
// the better the performance will be. in theory, this computation can be performed asynchronously and even
// offloaded to a remote device. it doesn't even have to be based on an LLM. instead, it can provide tokens
// from a cache or lookup tables.
//
llama_tokens draft = common_speculative_gen_draft(spec, params_spec, prompt_tgt, id_last);
//LOG_DBG("draft: %s\n", string_from(ctx_dft, draft).c_str());
// always have a token to evaluate from before - id_last
common_batch_clear(batch_tgt);
common_batch_add (batch_tgt, id_last, n_past++, { 0 }, true);
// evaluate the target model on [id_last, draft0, draft1, ..., draftN-1]
{
// do not waste time on small drafts
if (draft.size() < (size_t) n_draft_min) {
draft.clear();
}
for (size_t i = 0; i < draft.size(); ++i) {
common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
}
//LOG_DBG("target batch: %s\n", string_from(ctx_tgt, batch_tgt).c_str());
llama_decode(ctx_tgt, batch_tgt);
}
// sample from the full target batch and return the accepted tokens based on the target sampler
//
// for each token to be accepted, the sampler would have to sample that same token
// in such cases, instead of decoding the sampled token as we normally do, we simply continue with the
// available logits from the batch and sample the next token until we run out of logits or the sampler
// disagrees with the draft
//
const auto ids = common_sampler_sample_and_accept_n(smpl, ctx_tgt, draft);
//LOG_DBG("ids: %s\n", string_from(ctx_tgt, ids).c_str());
GGML_ASSERT(ids.size() > 0); // there will always be at least one accepted token
n_past += ids.size() - 1;
n_drafted += draft.size(); // note: we ignore the discarded small drafts
n_accept += ids.size() - 1;
n_predict += ids.size();
// process the accepted tokens and update contexts
//
// this is the standard token post-processing that we normally do
// in this case, we do it for a group of accepted tokens at once
//
for (size_t i = 0; i < ids.size(); ++i) {
prompt_tgt.push_back(id_last);
id_last = ids[i];
if (llama_token_is_eog(model_tgt, id_last)) {
has_eos = true;
break;
}
const std::string token_str = common_token_to_piece(ctx_tgt, id_last);
if (params.use_color && i + 1 < ids.size()) {
LOG("\u001b[%dm%s\u001b[37m", (36 - 0 % 6), token_str.c_str());
} else {
LOG("%s", token_str.c_str());
}
}
LOG_DBG("accepted %d/%d draft tokens, the last target token is: (%d)\n", (int) ids.size() - 1, (int) draft.size(), id_last);
{
LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past, -1);
}
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
break;
}
}
auto t_dec_end = ggml_time_us();
const int n_input = inp.size();
LOG("\n\n");
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
LOG_INF("\n");
LOG_INF("n_draft = %d\n", n_draft);
LOG_INF("n_predict = %d\n", n_predict);
LOG_INF("n_drafted = %d\n", n_drafted);
LOG_INF("n_accept = %d\n", n_accept);
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_INF("\n");
LOG_INF("draft:\n\n");
llama_perf_context_print(ctx_dft);
LOG_INF("\n");
LOG_INF("target:\n\n");
common_perf_print(ctx_tgt, smpl);
common_sampler_free(smpl);
common_speculative_free(spec);
llama_free(ctx_tgt);
llama_free_model(model_tgt);
llama_free(ctx_dft);
llama_free_model(model_dft);
llama_backend_free();
LOG("\n\n");
return 0;
}
|