File size: 19,741 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#pragma once

#include "ggml.h"
#include "ggml-alloc.h"

#ifdef GGML_BACKEND_SHARED
#    if defined(_WIN32) && !defined(__MINGW32__)
#        ifdef GGML_BACKEND_BUILD
#            define GGML_BACKEND_API __declspec(dllexport) extern
#        else
#            define GGML_BACKEND_API __declspec(dllimport) extern
#        endif
#    else
#        define GGML_BACKEND_API __attribute__ ((visibility ("default"))) extern
#    endif
#else
#    define GGML_BACKEND_API extern
#endif

#ifdef  __cplusplus
extern "C" {
#endif

    typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
    typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
    typedef struct ggml_backend_event * ggml_backend_event_t;
    typedef struct ggml_backend * ggml_backend_t;
    typedef void * ggml_backend_graph_plan_t;
    typedef struct ggml_backend_reg * ggml_backend_reg_t;
    typedef struct ggml_backend_device * ggml_backend_dev_t;


    //
    // Backend buffer type
    //

    GGML_API const char *          ggml_backend_buft_name          (ggml_backend_buffer_type_t buft);
    GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer  (ggml_backend_buffer_type_t buft, size_t size);
    GGML_API size_t                ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
    GGML_API size_t                ggml_backend_buft_get_max_size  (ggml_backend_buffer_type_t buft);
    GGML_API size_t                ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
    GGML_API bool                  ggml_backend_buft_is_host       (ggml_backend_buffer_type_t buft);
    GGML_API ggml_backend_dev_t    ggml_backend_buft_get_device    (ggml_backend_buffer_type_t buft);

    //
    // Backend buffer
    //

    enum ggml_backend_buffer_usage {
        GGML_BACKEND_BUFFER_USAGE_ANY = 0,
        GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
        GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
    };

    GGML_API const char *                   ggml_backend_buffer_name          (ggml_backend_buffer_t buffer);
    GGML_API void                           ggml_backend_buffer_free          (ggml_backend_buffer_t buffer);
    GGML_API void *                         ggml_backend_buffer_get_base      (ggml_backend_buffer_t buffer);
    GGML_API size_t                         ggml_backend_buffer_get_size      (ggml_backend_buffer_t buffer);
    GGML_API void                           ggml_backend_buffer_init_tensor   (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
    GGML_API size_t                         ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
    GGML_API size_t                         ggml_backend_buffer_get_max_size  (ggml_backend_buffer_t buffer);
    GGML_API size_t                         ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
    GGML_API void                           ggml_backend_buffer_clear         (ggml_backend_buffer_t buffer, uint8_t value);
    GGML_API bool                           ggml_backend_buffer_is_host       (ggml_backend_buffer_t buffer);
    GGML_API void                           ggml_backend_buffer_set_usage     (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
    GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage     (ggml_backend_buffer_t buffer);
    GGML_API ggml_backend_buffer_type_t     ggml_backend_buffer_get_type      (ggml_backend_buffer_t buffer);
    GGML_API void                           ggml_backend_buffer_reset         (ggml_backend_buffer_t buffer);

    // tensor copy between different backends
    GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);

    //
    // Backend (stream)
    //

    GGML_API ggml_guid_t  ggml_backend_guid(ggml_backend_t backend);
    GGML_API const char * ggml_backend_name(ggml_backend_t backend);
    GGML_API void         ggml_backend_free(ggml_backend_t backend);

    GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
    GGML_API ggml_backend_buffer_t      ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
    GGML_API size_t                     ggml_backend_get_alignment(ggml_backend_t backend);
    GGML_API size_t                     ggml_backend_get_max_size(ggml_backend_t backend);

    GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend,       struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
    GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor,       void * data, size_t offset, size_t size);

    // "offset" refers to the offset in tensor->data for setting/getting data
    GGML_API void ggml_backend_tensor_set(      struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
    GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor,       void * data, size_t offset, size_t size);
    GGML_API void ggml_backend_tensor_memset(   struct ggml_tensor * tensor,     uint8_t value, size_t offset, size_t size);

    GGML_API void ggml_backend_synchronize(ggml_backend_t backend);

    GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
    GGML_API void                      ggml_backend_graph_plan_free  (ggml_backend_t backend, ggml_backend_graph_plan_t plan);

    GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
    GGML_API enum ggml_status ggml_backend_graph_compute      (ggml_backend_t backend, struct ggml_cgraph * cgraph);
    GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);

    // NOTE: will be removed, use device version instead
    GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
    GGML_API bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
    GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);

    // asynchronous copy
    // the copy is performed after all the currently queued operations in backend_src
    // backend_dst will wait for the copy to complete before performing other operations
    // automatic fallback to sync copy if async is not supported
    GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);

    GGML_API ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend);

    //
    // Events
    //

    GGML_API ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device);
    GGML_API void                 ggml_backend_event_free(ggml_backend_event_t event);
    GGML_API void                 ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend);
    GGML_API void                 ggml_backend_event_synchronize(ggml_backend_event_t event);
    GGML_API void                 ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event);

    //
    // Backend device
    //

    enum ggml_backend_dev_type {
        // CPU device using system memory
        GGML_BACKEND_DEVICE_TYPE_CPU,
        // GPU device using dedicated memory
        GGML_BACKEND_DEVICE_TYPE_GPU,
        // accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
        GGML_BACKEND_DEVICE_TYPE_ACCEL
    };

    // functionality supported by the device
    struct ggml_backend_dev_caps {
        // asynchronous operations
        bool async;
        // pinned host buffer
        bool host_buffer;
        // creating buffers from host ptr
        bool buffer_from_host_ptr;
        // event synchronization
        bool events;
    };

    // all the device properties
    struct ggml_backend_dev_props {
        const char * name;
        const char * description;
        size_t memory_free;
        size_t memory_total;
        enum ggml_backend_dev_type type;
        struct ggml_backend_dev_caps caps;
    };

    GGML_API const char *                  ggml_backend_dev_name(ggml_backend_dev_t device);
    GGML_API const char *                  ggml_backend_dev_description(ggml_backend_dev_t device);
    GGML_API void                          ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total);
    GGML_API enum ggml_backend_dev_type    ggml_backend_dev_type(ggml_backend_dev_t device);
    GGML_API void                          ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props);
    GGML_API ggml_backend_reg_t            ggml_backend_dev_backend_reg(ggml_backend_dev_t device);
    GGML_API ggml_backend_t                ggml_backend_dev_init(ggml_backend_dev_t device, const char * params);
    GGML_API ggml_backend_buffer_type_t    ggml_backend_dev_buffer_type(ggml_backend_dev_t device);
    GGML_API ggml_backend_buffer_type_t    ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device);
    GGML_API ggml_backend_buffer_t         ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);

    GGML_API bool                          ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op);
    GGML_API bool                          ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft);
    GGML_API bool                          ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op);

    //
    // Backend (reg)
    //

    GGML_API const char *       ggml_backend_reg_name(ggml_backend_reg_t reg);
    GGML_API size_t             ggml_backend_reg_dev_count(ggml_backend_reg_t reg);
    GGML_API ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index);
    GGML_API void *             ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name);

    // Common functions that may be obtained using ggml_backend_reg_get_proc_address

    // Split buffer type for tensor parallelism
    typedef ggml_backend_buffer_type_t   (*ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
    // Set the number of threads for the backend
    typedef void                         (*ggml_backend_set_n_threads_t)(ggml_backend_t backend, int n_threads);
    // Get additional buffer types provided by the device (returns a NULL-terminated array)
    typedef ggml_backend_buffer_type_t * (*ggml_backend_dev_get_extra_bufts_t)(ggml_backend_dev_t device);
    // Set the abort callback for the backend
    typedef void                         (*ggml_backend_set_abort_callback_t)(ggml_backend_t backend, ggml_abort_callback abort_callback, void * abort_callback_data);
    // Get a list of feature flags supported by the backend (returns a NULL-terminated array)
    struct ggml_backend_feature {
        const char * name;
        const char * value;
    };
    typedef struct ggml_backend_feature * (*ggml_backend_get_features_t)(ggml_backend_reg_t reg);

    //
    // Backend registry
    //

    // Backend (reg) enumeration
    GGML_API size_t             ggml_backend_reg_count(void);
    GGML_API ggml_backend_reg_t ggml_backend_reg_get(size_t index);
    GGML_API ggml_backend_reg_t ggml_backend_reg_by_name(const char * name);

    // Device enumeration
    GGML_API size_t             ggml_backend_dev_count(void);
    GGML_API ggml_backend_dev_t ggml_backend_dev_get(size_t index);
    GGML_API ggml_backend_dev_t ggml_backend_dev_by_name(const char * name);
    GGML_API ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type);

    // Direct backend (stream) initialization
    // = ggml_backend_dev_init(ggml_backend_dev_by_name(name), params)
    GGML_API ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params);
    // = ggml_backend_dev_init(ggml_backend_dev_by_type(type), params)
    GGML_API ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params);
    // = ggml_backend_dev_init(ggml_backend_dev_by_type(GPU) OR ggml_backend_dev_by_type(CPU), NULL)
    GGML_API ggml_backend_t ggml_backend_init_best(void);

    // Load a backend from a dynamic library and register it
    GGML_API ggml_backend_reg_t ggml_backend_load(const char * path);
    // Unload a backend if loaded dynamically and unregister it
    GGML_API void               ggml_backend_unload(ggml_backend_reg_t reg);
    // Load all known backends from dynamic libraries
    GGML_API void               ggml_backend_load_all(void);

    //
    // Backend scheduler
    //

    // The backend scheduler allows for multiple backend devices to be used together
    // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
    // The backends are selected based on:
    // - the backend that supports the operation
    // - the location of the pre-allocated tensors (e.g. the weights)
    /*
      Example usage:

        // operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
        // preferrably to run on the same backend as the buffer
        ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);

        sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);

        // initialize buffers from a max size graph (optional)
        reserve_graph = build_graph(sched, max_batch_size);

        // manually assign nodes to a backend (optional, should not be needed in most cases)
        struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
        ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);

        ggml_backend_sched_reserve(sched, reserve_graph);

        // compute
        graph = build_graph(sched); // the graph and its tensors are single-use in terms of allocation, multi-use in terms of computation
        for (int i = 0; i < 10; ++i) {
            ggml_backend_sched_graph_compute(sched, graph); // on the first iteration the graph is allocated automatically
        }

        // if there are graph inputs:
        graph = build_graph(sched); // get a new graph that is not allocated (the metadata for the old graph is freed once ggml_free is called)
        ggml_backend_sched_reset(sched); // clear the allocation of the previous graph
        ggml_backend_sched_alloc_graph(sched, graph); // explicitly allocate the new graph but do not execute it
        ggml_backend_tensor_set(input_tensor, ...); // copy data to the newly allocated graph tensors
        ggml_backend_sched_graph_compute(sched, graph); // execute the graph

        // as an alternative to the above it is also possible to assign the inputs to a dedicated context and
        // allocate them statically via ggml_backend_alloc_ctx_tensors
    }
    */

    typedef struct ggml_backend_sched * ggml_backend_sched_t;

    // Evaluation callback for each node in the graph (set with ggml_backend_sched_set_eval_callback)
    // when ask == true, the scheduler wants to know if the user wants to observe this node
    // this allows the scheduler to batch nodes together in order to evaluate them in a single call
    //
    // when ask == false, the scheduler is passing the node tensor to the user for observation
    // if the user returns false, the scheduler will cancel the graph compute
    //
    typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);

    // Initialize a backend scheduler, backends with low index are given priority over backends with high index
    GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
    GGML_API void                 ggml_backend_sched_free(ggml_backend_sched_t sched);

    // Initialize backend buffers from a measure graph
    GGML_API bool                 ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); // returns success

    GGML_API int                  ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched);
    GGML_API ggml_backend_t       ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i);

    // Get the number of splits of the last graph
    GGML_API int                  ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
    GGML_API int                  ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);

    GGML_API size_t               ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);

    GGML_API void                 ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
    GGML_API ggml_backend_t       ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);

    // Allocate and compute graph on the backend scheduler
    GGML_API bool                 ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); // returns success
    GGML_API enum ggml_status     ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
    GGML_API enum ggml_status     ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
    GGML_API void                 ggml_backend_sched_synchronize(ggml_backend_sched_t sched);

    // Reset all assignments and allocators - must be called before changing the node backends or allocating a new graph.
    // This in effect deallocates all tensors that were previously allocated and leaves them with dangling pointers.
    // The correct way to use this API is to discard the deallocated tensors and create new ones.
    GGML_API void                 ggml_backend_sched_reset(ggml_backend_sched_t sched);

    // Set a callback to be called for each resulting node during graph compute
    GGML_API void                 ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);

    //
    // Utils
    //

    struct ggml_backend_graph_copy {
        ggml_backend_buffer_t buffer;
        struct ggml_context * ctx_allocated;
        struct ggml_context * ctx_unallocated;
        struct ggml_cgraph * graph;
    };

    // Copy a graph to a different backend
    GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
    GGML_API void                           ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);

    typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);

    // Compare the output of two backends
    GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);

    // Tensor initialization
    GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
    GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);

    // CPU buffer types are always available
    GGML_API ggml_backend_buffer_t      ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
    GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);

#ifdef  __cplusplus
}
#endif