File size: 77,510 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
#include "llama-vocab.h"

#include "unicode.h"

#include <algorithm>
#include <cassert>
#include <cfloat>
#include <climits>
#include <cstdarg>
#include <cstring>
#include <forward_list>
#include <queue>
#include <sstream>

//
// helpers
//

LLAMA_ATTRIBUTE_FORMAT(1, 2)
static std::string format(const char * fmt, ...) {
    va_list ap;
    va_list ap2;
    va_start(ap, fmt);
    va_copy(ap2, ap);
    int size = vsnprintf(NULL, 0, fmt, ap);
    GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
    std::vector<char> buf(size + 1);
    int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
    GGML_ASSERT(size2 == size);
    va_end(ap2);
    va_end(ap);
    return std::string(buf.data(), size);
}

struct naive_trie {
    naive_trie() : has_value(false), value(0) {
    }
    void insert(const char * key, size_t len, int32_t value = 0) {
        if (len == 0) {
            this->has_value = true;
            this->value = value;
            return;
        }
        char c = key[0];
        auto res = children.find(c);
        if (res != children.end()) {
            res->second.insert(key + 1, len - 1, value);
        } else {
            auto res = children.insert(std::make_pair(c, naive_trie()));
            res.first->second.insert(key + 1, len - 1, value);
        }
    }
    std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) const {
        if (len == 0 || offset == len) {
            return std::make_pair(key, offset);
        }
        char c = key[offset];
        auto res = children.find(c);
        if (res != children.end()) {
            return res->second.get_longest_prefix(key, len, offset + 1);
        }

        return std::make_pair(key, offset);
    }
    const struct naive_trie * traverse(const char c) const {
        auto res = children.find(c);
        if (res != children.end()) {
            return &res->second;
        }

        return NULL;
    }
    std::map<char, struct naive_trie> children;
    bool has_value;
    llama_token value;
};

//
// impl
//

struct llm_tokenizer {
   llm_tokenizer() {}
   virtual ~llm_tokenizer() = default;
};

llama_vocab::~llama_vocab() {
    delete tokenizer;
}

int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
    GGML_ASSERT(token_left.find(' ')   == std::string::npos);
    GGML_ASSERT(token_left.find('\n')  == std::string::npos);
    GGML_ASSERT(token_right.find(' ')  == std::string::npos);
    GGML_ASSERT(token_right.find('\n') == std::string::npos);

    auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
    if (it == bpe_ranks.end()) {
        return -1;
    }

    return it->second;
}

static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
    return vocab.type;
}

static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
}

static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
}

static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
}

static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
}

static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
}

static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
}

static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
    GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
    GGML_ASSERT(llama_is_byte_token(vocab, id));
    const auto & token_data = vocab.id_to_token.at(id);
    switch (llama_vocab_get_type(vocab)) {
        case LLAMA_VOCAB_TYPE_SPM:
        case LLAMA_VOCAB_TYPE_UGM: {
            auto buf = token_data.text.substr(3, 2);
            return strtol(buf.c_str(), NULL, 16);
        }
        case LLAMA_VOCAB_TYPE_BPE: {
            GGML_ABORT("fatal error");
            //return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
        }
        case LLAMA_VOCAB_TYPE_WPM: {
            GGML_ABORT("fatal error");
        }
        default:
            GGML_ABORT("fatal error");
    }
}

static void llama_escape_whitespace(std::string & text) {
    replace_all(text, " ", "\xe2\x96\x81");
}

static void llama_unescape_whitespace(std::string & word) {
    replace_all(word, "\xe2\x96\x81", " ");
}

struct llm_symbol {
    using index = int;
    index prev;
    index next;
    const char * text;
    size_t n;
};

static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");

//
// SPM tokenizer
// original implementation:
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
//

struct llm_bigram_spm {
    struct comparator {
        bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
            return (l.score < r.score) || (l.score == r.score && l.left > r.left);
        }
    };
    using queue_storage = std::vector<llm_bigram_spm>;
    using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
    llm_symbol::index left;
    llm_symbol::index right;
    float score;
    size_t size;
};

struct llm_tokenizer_spm : llm_tokenizer {
    llm_tokenizer_spm(const llama_vocab & /*vocab*/) : llm_tokenizer() {}
};

struct llm_tokenizer_spm_session {
    llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {}

    void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {

        // split string into utf8 chars
        int index = 0;
        size_t offs = 0;
        while (offs < text.size()) {
            llm_symbol sym;
            size_t len = unicode_len_utf8(text[offs]);
            sym.text = text.c_str() + offs;
            sym.n = std::min(len, text.size() - offs);
            offs += sym.n;
            sym.prev = index - 1;
            sym.next = offs == text.size() ? -1 : index + 1;
            index++;
            symbols.emplace_back(sym);
        }

        // seed the work queue with all possible 2-character tokens.
        for (int i = 1; i < (int) symbols.size(); ++i) {
            try_add_bigram(i - 1, i);
        }

        // keep substituting the highest frequency pairs for as long as we can.
        while (!work_queue.empty()) {
            auto bigram = work_queue.top();
            work_queue.pop();

            auto & left_sym = symbols[bigram.left];
            auto & right_sym = symbols[bigram.right];

            // if one of the symbols already got merged, skip it.
            if (left_sym.n == 0 || right_sym.n == 0 ||
                left_sym.n + right_sym.n != bigram.size) {
                continue;
            }

            // merge the right sym into the left one
            left_sym.n += right_sym.n;
            right_sym.n = 0;

            //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);

            // remove the right sym from the chain
            left_sym.next = right_sym.next;
            if (right_sym.next >= 0) {
                symbols[right_sym.next].prev = bigram.left;
            }

            // find more substitutions
            try_add_bigram(left_sym.prev, bigram.left);
            try_add_bigram(bigram.left, left_sym.next);
        }

        for (int i = 0; i != -1; i = symbols[i].next) {
            auto & symbol = symbols[i];
            resegment(symbol, output);
        }
    }

private:
    void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
        auto text = std::string(symbol.text, symbol.n);
        auto token = vocab.token_to_id.find(text);

        // Do we need to support is_unused?
        if (token != vocab.token_to_id.end()) {
            output.push_back((*token).second);
            return;
        }

        const auto p = rev_merge.find(text);

        if (p == rev_merge.end()) {
            // output any symbols that did not form tokens as bytes.
            output.reserve(output.size() + symbol.n);
            for (int j = 0; j < (int)symbol.n; ++j) {
                llama_vocab::id token_id = llama_byte_to_token_impl(vocab, symbol.text[j]);
                output.push_back(token_id);
            }
            return;
        }

        resegment(symbols[p->second.first], output);
        resegment(symbols[p->second.second], output);
    }

    void try_add_bigram(int left, int right) {
        if (left == -1 || right == -1) {
            return;
        }
        const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
        auto token = vocab.token_to_id.find(text);

        if (token == vocab.token_to_id.end()) {
            return;
        }

        if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
            return;
        }

        const auto & tok_data = vocab.id_to_token[(*token).second];

        llm_bigram_spm bigram;
        bigram.left  = left;
        bigram.right = right;
        bigram.score = tok_data.score;
        bigram.size  = text.size();

        work_queue.push(bigram);

        // Do we need to support is_unused?
        rev_merge[text] = std::make_pair(left, right);
    }

    const llama_vocab & vocab;
    // currently unused
    // const llm_tokenizer_spm * spm_tokenizer;

    std::vector<llm_symbol> symbols;
    llm_bigram_spm::queue work_queue;
    std::map<std::string, std::pair<int, int>> rev_merge;
};

//
// BPE tokenizer
// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
// tried to simplify unicode stuff, so most likely does not work 100% correctly!
//

// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused

template<typename T, typename Container = std::vector<T>, typename Compare = std::less<typename Container::value_type>>
class llama_priority_queue : public std::priority_queue<T, Container, Compare> {
public:
    using std::priority_queue<T, Container, Compare>::priority_queue;

    T pop_move() {
        T item = std::move(this->c.front());
        std::pop_heap(this->c.begin(), this->c.end(), this->comp);
        this->c.pop_back();
        return item;
    }

    void pop() =  delete;
};

struct llm_bigram_bpe {
    struct comparator {
        bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
            return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
        }
    };

    using queue_storage = std::vector<llm_bigram_bpe>;
    using queue = llama_priority_queue<llm_bigram_bpe, queue_storage, comparator>;
    llm_symbol::index left;
    llm_symbol::index right;
    std::string text;
    int rank;
    size_t size;
};

struct llm_tokenizer_bpe : llm_tokenizer {
    llm_tokenizer_bpe(const llama_vocab & vocab) : llm_tokenizer() {
        GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
        switch (vocab.type_pre) {
            case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
                regex_exprs = {
                    // original regex from tokenizer.json
                    //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",

                    // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
                    "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_DBRX:
            case LLAMA_VOCAB_PRE_TYPE_SMAUG:
                regex_exprs = {
                    // same as llama3
                    "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
                regex_exprs = {
                    "[\r\n]",
                    "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
                    "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
                    "\\s+$",
                    "[一-龥ࠀ-一가-퟿]+",
                    "\\p{N}+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
                regex_exprs = {
                    "[\r\n]",
                    "\\s?\\p{L}+",
                    "\\s?\\p{P}+",
                    "[一-龥ࠀ-一가-퟿]+",
                    "\\p{N}",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_FALCON:
                regex_exprs = {
                    "[\\p{P}\\$\\+<=>\\^~\\|`]+",
                    "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                    "[0-9][0-9][0-9]",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_STARCODER:
            case LLAMA_VOCAB_PRE_TYPE_REFACT:
            case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
            case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
            case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
            case LLAMA_VOCAB_PRE_TYPE_EXAONE:
                regex_exprs = {
                    "\\p{N}",
                    "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_GPT2:
            case LLAMA_VOCAB_PRE_TYPE_MPT:
            case LLAMA_VOCAB_PRE_TYPE_OLMO:
            case LLAMA_VOCAB_PRE_TYPE_JAIS:
                regex_exprs = {
                    "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
            case LLAMA_VOCAB_PRE_TYPE_QWEN2:
                regex_exprs = {
                    // original regex from tokenizer.json
                    // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
                    "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_PORO:
            case LLAMA_VOCAB_PRE_TYPE_BLOOM:
            case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH:
                regex_exprs = {
                    " ?[^(\\s|.,!?…。,、।۔،)]+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
                regex_exprs = {
                    "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_VIKING:
                regex_exprs = {
                    " ?[^(\\s|.,!?…。,、।۔،)]+",
                    "\\p{N}",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
                // original regex from tokenizer.json
                // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
                regex_exprs = {
                    "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_CHAMELEON:
                // Note: in theory, the special token (sentinel and image token) regex_exprs below
                // are unnecessary, as they are split in `tokenizer_st_partition` anyway.
                // However, since the upstream pre-tokenizer uses them, they are also
                // included here (see https://huggingface.co/facebook/chameleon-7b).
                regex_exprs = {
                    "<sentinel:[0-9]+>",  // Sentinel tokens
                    "(IMGIMG)((A|B|C|D|E|F|G|H|I){1,4})Z",  // Image tokens
                    "([\\t\\n]|    |  )",  // directly from tokenizer.json
                    "\\p{N}", // Individual digits
                    "[\\p{P}!-/:-@\\[-`{-~]",  // Punctuation, Isolated
                    "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                };
                break;
            default:
                // default regex for BPE tokenization pre-processing
                regex_exprs = {
                    "[\\p{P}\\$\\+<=>\\^~\\|]+",
                    "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                    "\\p{N}+",
                    "[0-9][0-9][0-9]",
                };
                break;
        }
    }

    std::vector<std::string> regex_exprs;
};

struct llm_tokenizer_bpe_session {
    llm_tokenizer_bpe_session(const llama_vocab & vocab) : vocab(vocab),
        bpe_tokenizer(static_cast<const llm_tokenizer_bpe *>(vocab.tokenizer)) {}

    static void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output)  {
        output.push_back(token_id);
    }

    bool append_bos(std::vector<llama_vocab::id> & output) const {
        if (vocab.tokenizer_add_bos) {
            GGML_ASSERT(vocab.special_bos_id != -1);
            output.push_back(vocab.special_bos_id);
            return true;
        }
        return false;
    }

    bool append_eos(std::vector<llama_vocab::id> & output) const {
        if (vocab.tokenizer_add_eos) {
            GGML_ASSERT(vocab.special_eos_id != -1);
            output.push_back(vocab.special_eos_id);
            return true;
        }
        return false;
    }

    void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
        if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
            LLAMA_LOG_WARN(
                "%s: Added a BOS token to the prompt as specified by the model but the prompt "
                "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
                "Are you sure this is what you want?\n", __FUNCTION__);
        }
        if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
            LLAMA_LOG_WARN(
                "%s: Added a EOS token to the prompt as specified by the model but the prompt "
                "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
                "Are you sure this is what you want?\n", __FUNCTION__);
        }
    }

    void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
        int final_prev_index = -1;
        const auto word_collection = unicode_regex_split(text, bpe_tokenizer->regex_exprs);

        symbols_final.clear();

        for (const auto & word : word_collection) {
            work_queue = llm_bigram_bpe::queue();
            symbols.clear();

            int index = 0;
            size_t offset = 0;

            if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
                symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
                offset = word.size();
            }

            while (offset < word.size()) {
                llm_symbol sym;
                size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset]));
                sym.text = word.c_str() + offset;
                sym.n = char_len;
                offset += sym.n;
                sym.prev = index - 1;
                sym.next = offset == word.size() ? -1 : index + 1;
                index++;
                symbols.emplace_back(sym);
            }
            for (int i = 1; i < (int) symbols.size(); ++i) {
                add_new_bigram(i - 1, i);
            }

            // build token(s)
            while (!work_queue.empty()) {
                auto bigram = work_queue.pop_move();

                auto & left_symbol = symbols[bigram.left];
                auto & right_symbol = symbols[bigram.right];

                if (left_symbol.n == 0 || right_symbol.n == 0) {
                    continue;
                }
                std::string left_token = std::string(left_symbol.text, left_symbol.n);
                std::string right_token = std::string(right_symbol.text, right_symbol.n);
                if (left_token + right_token != bigram.text) {
                    continue;  // Skip this bigram if it's outdated
                }

                // merge the right sym into the left one
                left_symbol.n += right_symbol.n;
                right_symbol.n = 0;

                // remove the right sym from the chain
                left_symbol.next = right_symbol.next;
                if (right_symbol.next >= 0) {
                    symbols[right_symbol.next].prev = bigram.left;
                }

                add_new_bigram(left_symbol.prev, bigram.left);  // left side of current symbol
                add_new_bigram(bigram.left, left_symbol.next);  // right side of current symbol
            }

            // add the finished tokens to the final list keeping correct order for next and prev
            for (auto & sym : symbols) {
                if (sym.n > 0) {
                    sym.prev = final_prev_index;
                    sym.next = -1;
                    if (final_prev_index != -1) {
                        symbols_final[final_prev_index].next = symbols_final.size();
                    }
                    symbols_final.emplace_back(sym);
                    final_prev_index = symbols_final.size() - 1;
                }
            }
        }

        symbols = symbols_final;

        if (!symbols.empty()) {
            for (int i = 0; i != -1; i = symbols[i].next) {
                auto & symbol = symbols[i];
                if (symbol.n == 0) {
                    continue;
                }

                const std::string str = std::string(symbol.text, symbol.n);
                const auto token = vocab.token_to_id.find(str);

                if (token == vocab.token_to_id.end()) {
                    for (auto j = str.begin(); j != str.end(); ++j) {
                        std::string byte_str(1, *j);
                        auto token_multibyte = vocab.token_to_id.find(byte_str);
                        if (token_multibyte != vocab.token_to_id.end()) {
                            output.push_back(token_multibyte->second);
                        }
                    }
                } else {
                    output.push_back((*token).second);
                }
            }
        }
    }

private:
    void add_new_bigram(int left, int right) {
        if (left == -1 || right == -1) {
            return;
        }
        std::string left_token  = std::string(symbols[left].text,  symbols[left].n);
        std::string right_token = std::string(symbols[right].text, symbols[right].n);

        int rank_found = -1;

        rank_found = vocab.find_bpe_rank(left_token, right_token);

        if (rank_found < 0) {
            return;
        }

        llm_bigram_bpe bigram;

        bigram.left  = left;
        bigram.right = right;
        bigram.text  = left_token + right_token;
        bigram.size  = left_token.size() + right_token.size();
        bigram.rank  = rank_found;

        work_queue.push(bigram);
    }

    const llama_vocab & vocab;
    const llm_tokenizer_bpe * bpe_tokenizer;

    std::vector<llm_symbol> symbols;
    std::vector<llm_symbol> symbols_final;
    llm_bigram_bpe::queue work_queue;
};

//
// WPM tokenizer
//

struct llm_tokenizer_wpm : llm_tokenizer {
    llm_tokenizer_wpm(const llama_vocab & /*vocab*/) : llm_tokenizer() {}
};

struct llm_tokenizer_wpm_session {
    llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {}

    void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
        const auto & token_map = vocab.token_to_id;
        // normalize and split by whitespace
        std::vector<std::string> words = preprocess(text);
        // bos token prepended already

        // find the longest tokens that form the words
        for (const std::string & word : words) {
            // skip empty words
            if (word.size() == 0) {
                continue;
            }

            // prepend phantom space
            const std::string word1 = "\xe2\x96\x81" + word;
            const int n = word1.size();

            const size_t current_tokens = output.size();

            // we're at the start of a new word
            // move through character position in word
            for (int i = 0; i < n; ++i) {
                // loop through possible match length
                bool match = false;
                for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
                    auto it = token_map.find(word1.substr(i, j - i));
                    if (it != token_map.end()) {
                        output.push_back(it->second);
                        match = true;
                        i = j - 1;
                        break;
                    }
                }

                if (!match) { // discard all
                    output.resize(current_tokens);
                    break;  // and discard next tokens
                }
            }

            // we didn't find any matches for this word
            if (current_tokens == output.size()) {
                output.push_back(vocab.special_unk_id);
            }
        }
    }

    // TODO: reduce string copies by using cpts_offs array
    static std::vector<std::string> preprocess(const std::string & text)  {
        const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
        std::vector<std::string> words(1, "");

        for (const uint32_t cpt : cpts_nfd) {
            const auto flags = unicode_cpt_flags(cpt);

            if (flags.is_whitespace) {
                if (words.back().size()) {  // finish previous word if any
                    words.emplace_back();
                }
                continue;
            }

            assert (!flags.is_separator);
            if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
                continue;
            }

            const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
            if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
                if (words.back().size()) {  // finish previous word if any
                    words.emplace_back();
                }
                words.back() = s;       // single char word
                words.emplace_back();   // start a new word
            } else {
                words.back() += s;  // append char to word
            }
        }

        if (!words.back().size()) {
            words.pop_back();
        }

        return words;
    }

    static bool is_chinese_char(uint32_t cpt) {
        return
            (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
            (cpt >= 0x03400 && cpt <= 0x04DBF) ||
            (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
            (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
            (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
            (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
            (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
            (cpt >= 0x2F800 && cpt <= 0x2FA1F);
            //(cpt >= 0x3000  && cpt <= 0x303F)  ||
            //(cpt >= 0xFF00  && cpt <= 0xFFEF);
    }

private:
    const llama_vocab & vocab;
    // currently unused
    // const llm_tokenizer_wpm * wpm_tokenizer;
};

//
// UGM tokenizer
//

struct llm_tokenizer_ugm : llm_tokenizer {
    llm_tokenizer_ugm(const llama_vocab & vocab) : llm_tokenizer() {
        if (vocab.precompiled_charsmap.size() > 0) {
            size_t charsmap_offset = 0;

            // First four bytes of precompiled_charsmap contains length of binary
            // blob containing XOR-compressed compact double array (XCDA) entries
            uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0];
            charsmap_offset += sizeof(xcda_blob_size);
            if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) {
                throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
            }

            // Next xcda_blob_size bytes contain entries of XOR-compressed compact
            // double array (XCDA). Each entry is bit-packed into a 32-bit integer.
            xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset];
            xcda_array_size = xcda_blob_size / sizeof(uint32_t);
            charsmap_offset += xcda_blob_size;

            // Remaining bytes of precompiled charsmap contain null-terminated
            // replacement strings for prefixes matched by the XCDA.
            prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset];
            prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset;
        }

        for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
            const auto &token_data = vocab.id_to_token[id];

            if (llama_is_normal_token(vocab, id)) {
                min_score = std::min<float>(min_score, token_data.score);
                max_score = std::max<float>(max_score, token_data.score);
            }

            if (llama_is_normal_token(vocab, id) ||
                llama_is_user_defined_token(vocab, id) ||
                llama_is_unused_token(vocab, id)) {
                token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
            }

            if (llama_is_user_defined_token(vocab, id)) {
                user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
            }
        }

        unknown_token_score = min_score - unknown_token_score_penalty;
    }

    // escaped space symbol - U+2581 (Lower One Eighth Block)
    const std::string escaped_space = "\xE2\x96\x81";

    const char * prefix_replacements = NULL;
    size_t prefix_replacements_size = 0;

    const uint32_t * xcda_array = NULL;
    size_t xcda_array_size = 0;

    struct naive_trie user_defined_token_matcher;

    float min_score = FLT_MAX;
    float max_score = -FLT_MAX;

    float unknown_token_score_penalty = 10.0;
    float unknown_token_score;

    struct naive_trie token_matcher;
};

struct llm_tokenizer_ugm_session {
    llm_tokenizer_ugm_session(const llama_vocab & vocab) : vocab(vocab),
        ugm_tokenizer(static_cast<const llm_tokenizer_ugm *>(vocab.tokenizer)) {}

    /* This implementation is based on SentencePiece optimized Viterbi algorithm for
     * unigram language models. The general idea is to:
     * - move along the input sequence in steps of one UTF code point,
     * - at each step find all possible tokenizations of the prefix by
     *   traversing the tokens trie,
     * - for each tokenization store the best one so far (by higher score)
     * - use the position in sequence after given token as an index to store
     *   results
     * - if there was no valid tokenization of the current UTF code point
     *   then use unknown token with additional score penalty
     * After processing the whole sequence we backtrack from the end to get
     * the best tokenization.
    */
    void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
        // get current size of output (for reversal later)
        size_t output_size = output.size();

        // normalize the input first
        std::string normalized;
        normalize(text, &normalized);
        size_t input_len = normalized.size();
        if (input_len == 0) {
            return;
        }

        // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
        std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX});
        // at the beginning tokenization score is zero
        tokenization_results[0] = { vocab.special_unk_id, 0, 0 };

        for (size_t input_offset = 0; input_offset < input_len;) {
            size_t prefix_offset = input_offset;
            // calculate how many code units are in the currently processed UTF code point
            size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset);

            // traverse the token matcher trie to find a matching token
            bool single_codepoint_token_found = false;
            const struct best_tokenization & current_best = tokenization_results[input_offset];
            const struct naive_trie * node = ugm_tokenizer->token_matcher.traverse(normalized[prefix_offset++]);

            while (prefix_offset <= input_len && node != NULL) {
                // check if we found valid token in prefix
                if (node->has_value) {
                    // check if it corresponds to the whole UTF code point
                    if (prefix_offset - input_offset == n_utf8_code_units) {
                        single_codepoint_token_found = true;
                    }
                    llama_token token_id = node->value;
                    const auto & token_data = vocab.id_to_token[token_id];

                    // we set the user-defined token scores to 0 to make them more likely to be selected
                    // (normal token scores are log probabilities, so they are negative)
                    // score type is double here to make tokenization results exactly
                    // the same as in the HF tokenizer using SentencePiece
                    const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score;
                    const double challenger_score = current_best.score_sum + token_score;
                    struct best_tokenization & current_champ = tokenization_results[prefix_offset];
                    if (challenger_score > current_champ.score_sum) {
                        struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score };
                        current_champ = challenger;
                    }
                }
                node = node->traverse(normalized[prefix_offset++]);
            }

            // if we didn't find a valid token corresponding to the whole UTF code point
            // then use unknown token as the tokenization of this UTF code point
            if (!single_codepoint_token_found) {
                const double challenger_score = current_best.score_sum + ugm_tokenizer->unknown_token_score;
                prefix_offset = input_offset + n_utf8_code_units;
                struct best_tokenization & current_champ = tokenization_results[prefix_offset];
                if (challenger_score > current_champ.score_sum) {
                    struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score };
                    current_champ = challenger;
                }
            }

            // move to the next UTF code point
            input_offset += n_utf8_code_units;
        }

        // now backtrack from the end to gather token ids of the best tokenization
        // merge sequences of consecutive unknown tokens into single unknown tokens
        bool is_prev_unknown = false;
        for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
            bool is_unknown = tokenization.token_id == vocab.special_unk_id;
            if (!(is_prev_unknown && is_unknown)) {
                output.push_back(tokenization.token_id);
            }
            if (tokenization.input_offset == 0) {
                break;
            }
            is_prev_unknown = is_unknown;
        }

        // reverse the output since we added tokens starting from the end of the input
        std::reverse(output.begin() + output_size, output.end());
    }

private:

    // helper structure for returning normalization results
    struct normalization_result {
        const char * normalized;
        size_t normalized_len;
        size_t consumed_input;
    };

    void normalize(const std::string& input, std::string * normalized) {
        normalized->clear();
        normalized->reserve(input.size() * 3);

        const std::string space = vocab.tokenizer_escape_whitespaces ? ugm_tokenizer->escaped_space : " ";

        bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
        bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
        bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces;

        bool is_space_prepended = false;
        bool processing_non_ws = false;

        size_t input_len = input.size();

        for (size_t input_offset = 0; input_offset < input_len; ) {
            auto norm_res = normalize_prefix(input, input_offset);
            for (size_t i = 0; i < norm_res.normalized_len; i++) {
                char c = norm_res.normalized[i];
                if (c != ' ') {
                    if (!processing_non_ws) {
                        processing_non_ws = true;
                        if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
                            normalized->append(space);
                            is_space_prepended = true;
                        }
                    }
                    normalized->push_back(c);
                } else {
                    if (processing_non_ws) {
                        processing_non_ws = false;
                    }
                    if (!shall_merge_spaces) {
                        normalized->append(space);
                    }
                }
            }

            input_offset += norm_res.consumed_input;
        }

        if (shall_append_space) {
            normalized->append(space);
        }
    }

    /*
     * This structure is a view wrapper for XOR-compressed double array (XCDA)
     * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
     * Each bit-packed entry contains:
     * - BASE array value in bits 10-30
     * - LCHECK array value in bits 0-7
     * - LEAF array value in bit 9
     * Entries containing indexes of replacement sequences have set bit 31
     */
    struct xcda_array_view {
    public:
        xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
        }
        uint32_t get_base(size_t index) {
            uint32_t packed_node = get_node(index);
            return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
        }
        uint32_t get_lcheck(size_t index) {
            uint32_t packed_node = get_node(index);
            return packed_node & ((1U << 31) | 0xff);
        }
        bool get_leaf(size_t index) {
            uint32_t packed_node = get_node(index);
            return (packed_node >> 8) & 1;
        }
        uint32_t get_value(size_t index) {
            uint32_t packed_node = get_node(index);
            return packed_node & ((1U << 31) - 1);
        }
    private:
        uint32_t get_node(size_t index) {
            if (index > xcda_array_size) {
                throw std::runtime_error("Index out of array bounds in XCDA array!");
            }
            return xcda_array[index];
        }
        const uint32_t * xcda_array;
        size_t xcda_array_size;
    };

    // this structure stores the best tokenization so far at input_offset
    struct best_tokenization {
        llama_token token_id;
        size_t input_offset;
        float score_sum;
    };

    struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
        if (input_offset == input.size()) {
            return { &input[input_offset], 0, 0 };
        }

        // if input prefix matches some user-defined token return this token as normalization result
        auto user_defined_token_match =
           ugm_tokenizer->user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
        if (user_defined_token_match.second > 0) {
            return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
        }

        size_t longest_prefix_length = 0;
        size_t longest_prefix_offset = 0;

        if (ugm_tokenizer->xcda_array_size > 0) {
            struct xcda_array_view xcda_view(ugm_tokenizer->xcda_array, ugm_tokenizer->xcda_array_size);

            // Find the longest normalized sequence matching the input prefix by walking
            // the XOR-compressed compact double array (XCDA) starting from the root node
            // We find the index of the next node by calculating BASE[s] ^ c where s is
            // the index of the previous node and c is a numerical character value
            uint32_t node_index = 0;
            // get BASE of the root node
            node_index = xcda_view.get_base(node_index);
            for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
                unsigned char c = input[prefix_offset];
                if (c == 0) {
                    break;
                }
                node_index ^= c;
                // if value of LCHECK is not c it means that this is not a child of
                // the previous node, so we stop matching
                if (xcda_view.get_lcheck(node_index) != c) {
                    break;
                }
                bool is_leaf = xcda_view.get_leaf(node_index);
                // get BASE of the current node
                node_index ^= xcda_view.get_base(node_index);
                // if LEAF of the current node is true, it means that its BASE points to the node
                // containing index of replacement sequence for currently matched input prefix
                if (is_leaf)
                {
                    longest_prefix_length = prefix_offset - input_offset + 1;
                    // get index of replacement sequence for currently matched input prefix
                    longest_prefix_offset = xcda_view.get_value(node_index);
                }
            }
        }

        if (longest_prefix_length > 0) {
            // we have a match, so return the replacement sequence
            if (longest_prefix_offset >= ugm_tokenizer->prefix_replacements_size) {
                throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
            }
            const char * prefix_replacement = &(ugm_tokenizer->prefix_replacements)[longest_prefix_offset];
            return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
        }

        // check if the input prefix contains a valid sequence of UTF-8 code units
        try {
            // if yes, return this sequence unmodified
            size_t prefix_offset = input_offset;
            unicode_cpt_from_utf8(input, prefix_offset);
            return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
        } catch (std::invalid_argument & /*ex*/) {
            // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
            return { "\xEF\xBF\xBD", 3, 1 };
        }
    }

    const llama_vocab & vocab;
    const llm_tokenizer_ugm * ugm_tokenizer;
};

//
// RWKV tokenizer
//

static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escaped) {
    std::vector<uint8_t> output;
    output.reserve(escaped.size());

    // Parser state
    bool escaping = false;
    uint8_t hex_remaining = 0;
    uint8_t hex_acc = 0;

    // Step through characters, performing parsing
    for (const char & c : escaped) {
        // If we're parsing a hex code, interpret the next character
        if (hex_remaining != 0) {
            uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0');
            hex_acc = (hex_acc << 4) + value;

            hex_remaining -= 1;
            if (hex_remaining == 0) {
                output.push_back(hex_acc);
                hex_acc = 0;
            }

            continue;
        }

        // If we got an escape character, interpret it
        if (escaping) {
            if (c == 't') {
                output.push_back('\t');
            } else if (c == 'n') {
                output.push_back('\n');
            } else if (c == 'r') {
                output.push_back('\r');
            } else if (c == 'x') {
                hex_remaining = 2;
            } else {
                output.push_back(c);
            }

            escaping = false;
            continue;
        }

        if (c == '\\') {
            escaping = true;
            continue;
        }

        output.push_back(c);
    }

    return output;
}

struct llm_tokenizer_rwkv : llm_tokenizer {
    llm_tokenizer_rwkv(const llama_vocab & vocab) : llm_tokenizer() {
        // RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens.
        // For now, we decode the vocab here into the lookup we'll use for tokenization.

        // build trie
        for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
            const auto & token = vocab.id_to_token[id];
            const auto data = llama_unescape_rwkv_token(token.text);
            token_matcher.insert((const char *) data.data(), data.size(), id);
        }
    }

    struct naive_trie token_matcher;
};

struct llm_tokenizer_rwkv_session {
    llm_tokenizer_rwkv_session(const llama_vocab & vocab) : vocab(vocab),
        rwkv_tokenizer(static_cast<const llm_tokenizer_rwkv &>(*vocab.tokenizer)) {}

    void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
        uint32_t position = 0;
        while (position < text.size()) {
            const struct naive_trie * node = rwkv_tokenizer.token_matcher.traverse(text[position]);
            if (node == NULL) {
                // no matching token found, add unknown token
                output.push_back(vocab.special_unk_id);
                position += 1;
                continue;
            }

            // traverse the trie to find the longest matching token
            uint32_t token_id = 0;
            uint32_t token_length = 0;
            while (node != NULL) {
                if (node->has_value) {
                    token_id = node->value;
                    token_length = position + 1;
                }
                node = node->traverse(text[++position]);
            }

            // add the longest matching token
            output.push_back(token_id);
            position = token_length;
        }
    }

private:
    const llama_vocab & vocab;
    const llm_tokenizer_rwkv & rwkv_tokenizer;
};

void llama_vocab::init_tokenizer() {
    switch (type) {
        case LLAMA_VOCAB_TYPE_SPM:
            tokenizer = new llm_tokenizer_spm(*this);
            break;
        case LLAMA_VOCAB_TYPE_BPE:
            tokenizer = new llm_tokenizer_bpe(*this);
            break;
        case LLAMA_VOCAB_TYPE_WPM:
            tokenizer = new llm_tokenizer_wpm(*this);
            break;
        case LLAMA_VOCAB_TYPE_UGM:
            tokenizer = new llm_tokenizer_ugm(*this);
            break;
        case LLAMA_VOCAB_TYPE_RWKV:
            tokenizer = new llm_tokenizer_rwkv(*this);
            break;
        default:
            GGML_ABORT("unsupported vocab type");
    }
}

//
// (de-) tokenize
//

typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
    FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
    FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
} FRAGMENT_BUFFER_VARIANT_TYPE;

struct fragment_buffer_variant {
    fragment_buffer_variant(llama_vocab::id _token)
    :
        type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
        token(_token),
        raw_text(_dummy),
        offset(0),
        length(0) {}

    fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
    :
        type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
        token((llama_vocab::id) - 1),
        raw_text(_raw_text),
        offset(_offset),
        length(_length){
            GGML_ASSERT(_offset >= 0);
            GGML_ASSERT(_length >= 1);
            GGML_ASSERT(offset + length <= raw_text.length());
        }

    const FRAGMENT_BUFFER_VARIANT_TYPE type;
    const llama_vocab::id token;
    const std::string _dummy;
    const std::string & raw_text;
    const uint64_t offset;
    const uint64_t length;
};

// #define PRETOKENIZERDEBUG

static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) {
    // for each special token
    for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
        const auto & data = vocab.id_to_token[special_id];
        const auto & special_token = data.text;

        if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
            // Ignore control and unknown tokens when parse_special == false
            continue;
            // User-defined tokens are still pre-tokenized before everything else
            // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
            // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
        }

        // for each text fragment
        std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
        while (it != buffer.end()) {
            auto & fragment = (*it);

            // if a fragment is text ( not yet processed )
            if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                const auto & raw_text = fragment.raw_text;

                auto raw_text_base_offset = fragment.offset;
                auto raw_text_base_length = fragment.length;

                // loop over the text
                while (true) {
                    // find the first occurrence of a given special token in this fragment
                    //  passing offset argument only limit the "search area" but match coordinates
                    //  are still relative to the source full raw_text
                    auto match = raw_text.find(special_token, raw_text_base_offset);

                    // no occurrences found, stop processing this fragment for a given special token
                    if (match == std::string::npos) break;

                    // check if match is within bounds of offset <-> length
                    if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;

#ifdef PRETOKENIZERDEBUG
                    LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
#endif
                    auto source = std::distance(buffer.begin(), it);

                    // if match is further than base offset
                    //  then we have some text to the left of it
                    if (match > raw_text_base_offset) {
                        // left
                        const int64_t left_reminder_offset = raw_text_base_offset + 0;
                        int64_t left_reminder_length = match - raw_text_base_offset;

                        if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
                            while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
                                left_reminder_length--;
                            }
                        }

                        if (left_reminder_length > 0) {
                            buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
                            it++;
                        }

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
#endif
                    }

                    // special token
                    buffer.emplace_after(it, special_id);
                    it++;

                    // right
                    if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
                        int64_t right_reminder_offset = match + special_token.length();
                        int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());

                        if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
                            while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
                                right_reminder_offset++;
                                right_reminder_length--;
                            }
                        }

                        if (right_reminder_length > 0) {
                            buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
                            it++;
                        }

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
#endif

                        if (source == 0) {
                            buffer.erase_after(buffer.before_begin());
                        } else {
                            buffer.erase_after(std::next(buffer.begin(), (source-1)));
                        }

                        // repeat for the right side
                        raw_text_base_offset = right_reminder_offset;
                        raw_text_base_length = right_reminder_length;

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
#endif
                    } else {
                        if (source == 0) {
                            buffer.erase_after(buffer.before_begin());
                        } else {
                            buffer.erase_after(std::next(buffer.begin(), (source-1)));
                        }
                        break;
                    }
                }
            }
            it++;
        }
    }
}

std::vector<llama_vocab::id> llama_tokenize_internal(
        const llama_vocab & vocab,
        std::string raw_text,
        bool add_special,
        bool parse_special) {
    GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");

    std::vector<llama_vocab::id> output;
    std::forward_list<fragment_buffer_variant> fragment_buffer;

    if (!raw_text.empty()) {
        fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
        tokenizer_st_partition(vocab, fragment_buffer, parse_special);
    }

    switch (vocab.type) {
        case LLAMA_VOCAB_TYPE_SPM:
            {
                // OG tokenizer behavior:
                //
                // tokenizer.encode('', add_special_tokens=True)  returns [1]
                // tokenizer.encode('', add_special_tokens=False) returns []

                bool is_prev_special = true;  // prefix with space if first token

                if (add_special && vocab.tokenizer_add_bos) {
                    GGML_ASSERT(vocab.special_bos_id != -1);
                    output.push_back(vocab.special_bos_id);
                    is_prev_special = true;
                }

                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);

                        // prefix with space if previous is special
                        if (vocab.tokenizer_add_space_prefix && is_prev_special) {
                            raw_text = " " + raw_text;
                        }

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
                        llama_escape_whitespace(raw_text);
                        llm_tokenizer_spm_session session(vocab);
                        session.tokenize(raw_text, output);
                        is_prev_special = false;
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        output.push_back(fragment.token);
                        is_prev_special = true;
                    }
                }

                if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
                    LLAMA_LOG_WARN(
                        "%s: Added a BOS token to the prompt as specified by the model but the prompt "
                        "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
                        "Are you sure this is what you want?\n", __FUNCTION__);
                }

                if (add_special && vocab.tokenizer_add_eos) {
                    GGML_ASSERT(vocab.special_eos_id != -1);
                    output.push_back(vocab.special_eos_id);
                }
            } break;
        case LLAMA_VOCAB_TYPE_BPE:
            {
                llm_tokenizer_bpe_session session(vocab);
                // it calls some other methods that are not exist in llm_tokenizer,
                // here just cast it to bpe tokenizer object
                if (add_special) {
                    session.append_bos(output);
                }
                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
                        session.tokenize(raw_text, output);
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        session.append(fragment.token, output);
                    }
                }

                if (add_special) {
                    session.append_eos(output);
                    session.check_double_bos_eos(output);
                }
            } break;
        case LLAMA_VOCAB_TYPE_WPM:
            {
                if (add_special) {
                    GGML_ASSERT(vocab.special_cls_id != -1);
                    output.push_back(vocab.special_cls_id);
                }

                llm_tokenizer_wpm_session session(vocab);

                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
                        session.tokenize(raw_text, output);
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        output.push_back(fragment.token);
                    }
                }

                if (add_special) {
                    GGML_ASSERT(vocab.special_sep_id != -1);
                    output.push_back(vocab.special_sep_id);
                }
            } break;
        case LLAMA_VOCAB_TYPE_UGM:
            {
                if (add_special && vocab.tokenizer_add_bos) {
                    GGML_ASSERT(vocab.special_bos_id != -1);
                    output.push_back(vocab.special_bos_id);
                }
                llm_tokenizer_ugm_session session(vocab);

                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
                        session.tokenize(raw_text, output);
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        output.push_back(fragment.token);
                    }
                }

                if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
                    LLAMA_LOG_WARN(
                        "%s: Added a BOS token to the prompt as specified by the model but the prompt "
                        "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
                        "Are you sure this is what you want?\n", __FUNCTION__);
                }

                if (add_special && vocab.tokenizer_add_eos) {
                    GGML_ASSERT(vocab.special_eos_id != -1);
                    output.push_back(vocab.special_eos_id);
                }
            } break;
        case LLAMA_VOCAB_TYPE_RWKV:
            {
                llm_tokenizer_rwkv_session session(vocab);
                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif

                        session.tokenize(raw_text, output);
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        output.push_back(fragment.token);
                    }
                }
            } break;
        case LLAMA_VOCAB_TYPE_NONE:
            GGML_ABORT("fatal error");
    }

    return output;
}

llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch) {
    GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
    static const char * hex = "0123456789ABCDEF";
    switch (llama_vocab_get_type(vocab)) {
        case LLAMA_VOCAB_TYPE_SPM:
        case LLAMA_VOCAB_TYPE_UGM: {
            const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
            auto token = vocab.token_to_id.find(buf);
            if (token != vocab.token_to_id.end()) {
                return (*token).second;
            }
            // Try to fall back to just the byte as a string
            const char buf2[2] = { (char)ch, 0 };
            return vocab.token_to_id.at(buf2);
        }
        case LLAMA_VOCAB_TYPE_WPM:
        case LLAMA_VOCAB_TYPE_BPE: {
            return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
        }
        default:
            GGML_ABORT("fatal error");
    }
}

const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[token].text.c_str();
}

float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[token].score;
}

llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[token].attr;
}

bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) {
    return token != -1 && vocab.special_eog_ids.count(token) > 0;
}

bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) {
    return llama_is_control_token(vocab, token);
}

llama_token llama_token_bos_impl(const struct llama_vocab & vocab) {
    return vocab.special_bos_id;
}

llama_token llama_token_eos_impl(const struct llama_vocab & vocab) {
    return vocab.special_eos_id;
}

llama_token llama_token_eot_impl(const struct llama_vocab & vocab) {
    return vocab.special_eot_id;
}

llama_token llama_token_eom_impl(const struct llama_vocab & vocab) {
    return vocab.special_eom_id;
}

llama_token llama_token_cls_impl(const struct llama_vocab & vocab) {
    return vocab.special_cls_id;
}

llama_token llama_token_sep_impl(const struct llama_vocab & vocab) {
    return vocab.special_sep_id;
}

llama_token llama_token_nl_impl(const struct llama_vocab & vocab) {
    return vocab.linefeed_id;
}

llama_token llama_token_pad_impl(const struct llama_vocab & vocab) {
    return vocab.special_pad_id;
}

bool llama_add_bos_token_impl(const struct llama_vocab & vocab) {
    return vocab.tokenizer_add_bos;
}

bool llama_add_eos_token_impl(const struct llama_vocab & vocab) {
    return vocab.tokenizer_add_eos;
}

llama_token llama_token_prefix_impl(const struct llama_vocab & vocab) {
    return vocab.special_fim_pre_id;
}

llama_token llama_token_middle_impl(const struct llama_vocab & vocab) {
    return vocab.special_fim_mid_id;
}

llama_token llama_token_suffix_impl(const struct llama_vocab & vocab) {
    return vocab.special_fim_suf_id;
}

llama_token llama_token_fim_pre_impl(const struct llama_vocab & vocab) {
    return vocab.special_fim_pre_id;
}

llama_token llama_token_fim_suf_impl(const struct llama_vocab & vocab) {
    return vocab.special_fim_suf_id;
}

llama_token llama_token_fim_mid_impl(const struct llama_vocab & vocab) {
    return vocab.special_fim_mid_id;
}

llama_token llama_token_fim_pad_impl(const struct llama_vocab & vocab) {
    return vocab.special_fim_pad_id;
}

llama_token llama_token_fim_rep_impl(const struct llama_vocab & vocab) {
    return vocab.special_fim_rep_id;
}

llama_token llama_token_fim_sep_impl(const struct llama_vocab & vocab) {
    return vocab.special_fim_sep_id;
}

int32_t llama_tokenize_impl(
        const struct llama_vocab & vocab,
                      const char * text,
                         int32_t   text_len,
                     llama_token * tokens,
                         int32_t   n_tokens_max,
                            bool   add_special,
                            bool   parse_special) {
    auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special);
    if (n_tokens_max < (int) res.size()) {
        // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
        return -((int) res.size());
    }

    for (size_t i = 0; i < res.size(); i++) {
        tokens[i] = res[i];
    }

    return res.size();
}

static std::string llama_decode_text(const std::string & text) {
    std::string decoded_text;

    const auto cpts = unicode_cpts_from_utf8(text);
    for (const auto cpt : cpts) {
        const auto utf8 = unicode_cpt_to_utf8(cpt);
        try {
            decoded_text += unicode_utf8_to_byte(utf8);
        } catch (const std::out_of_range & /*e*/) {
            decoded_text += "[UNK_BYTE_0x";
            for (const auto c : utf8) {
                decoded_text += format("%02x", (uint8_t) c);
            }
            decoded_text += text + "]";
        }
    }

    return decoded_text;
}

// does not write null-terminator to buf
int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) {
    // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
    static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
    const llama_token_attr attr = llama_token_get_attr_impl(vocab, token);
    if (!special && (attr & attr_special)) {
        return 0;
    }

    // copy piece chars to output text buffer
    // skip up to 'lstrip' leading spaces before copying
    auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
        for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
            token++;
            size--;
        }
        if (length < (int32_t)size) {
            return -(int32_t) size;
        }
        memcpy(buf, token, size);
        return (int32_t) size;
    };

    // if we have a cache - use it
    {
        const auto & cache = vocab.cache_token_to_piece;

        if (!cache.empty()) {
            const auto & result = cache.at(token);
            return _try_copy(result.data(), result.size());
        }
    }

    if (0 <= token && token < (int32_t) vocab.id_to_token.size()) {
        const std::string & token_text = vocab.id_to_token[token].text;
        switch (llama_vocab_get_type(vocab)) {
            case LLAMA_VOCAB_TYPE_WPM:
            case LLAMA_VOCAB_TYPE_SPM:
            case LLAMA_VOCAB_TYPE_UGM: {
                // NOTE: we accept all unsupported token types,
                // suppressing them like CONTROL tokens.
                if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
                    return _try_copy(token_text.data(), token_text.size());
                }
                if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
                    std::string result = token_text;
                    llama_unescape_whitespace(result);
                    return _try_copy(result.data(), result.size());
                }
                if (attr & LLAMA_TOKEN_ATTR_BYTE) {
                    char byte = (char) llama_token_to_byte(vocab, token);
                    return _try_copy((char*) &byte, 1);
                }
                break;
            }
            case LLAMA_VOCAB_TYPE_BPE: {
                // NOTE: we accept all unsupported token types,
                // suppressing them like CONTROL tokens.
                if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
                    return _try_copy(token_text.data(), token_text.size());
                }
                if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
                    std::string result = llama_decode_text(token_text);
                    return _try_copy(result.data(), result.size());
                }
                break;
            }
            case LLAMA_VOCAB_TYPE_RWKV: {
                std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text);

                // If we don't have enough space, return an error
                if (result.size() > (size_t)length) {
                    return -(int)result.size();
                }

                memcpy(buf, result.data(), result.size());
                return (int)result.size();
            }
            default:
                GGML_ABORT("fatal error");
        }
    }

    return 0;
}

int32_t llama_detokenize_impl(
        const struct llama_vocab & vocab,
               const llama_token * tokens,
                         int32_t   n_tokens,
                            char * text,
                         int32_t   text_len_max,
                            bool   remove_special,
                            bool   unparse_special) {
    GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");

    int32_t avail = text_len_max;
    int32_t total = 0;

    // remove the leading space
    bool remove_space = vocab.tokenizer_add_space_prefix;

    if (remove_special && vocab.tokenizer_add_bos) {
        if (n_tokens > 0 && tokens[0] == vocab.special_bos_id) {
            remove_space = false;
            n_tokens--;
            tokens++;
        }
    }

    if (remove_special && vocab.tokenizer_add_eos) {
        if (n_tokens > 0 && tokens[n_tokens-1] == vocab.special_eos_id) {
            n_tokens--;
        }
    }

    for (int32_t i = 0; i < n_tokens; ++i) {
        GGML_ASSERT(avail >= 0);
        int32_t n_chars = llama_token_to_piece_impl(vocab, tokens[i], text, avail, remove_space, unparse_special);
        remove_space = false;
        if (n_chars < 0) {
            avail = 0;
            total -= n_chars;
        } else if (n_chars > 0) {
            avail -= n_chars;
            text  += n_chars;
            total += n_chars;
        }
    }

    if (total > text_len_max) {
        return -total;
    }

    if (vocab.tokenizer_clean_spaces) {
        text -= total;  // restart text

        // first pass: characters ?!.,  //TODO: where do these characters come from?
        const int32_t total1 = total;
        total = total ? 1 : 0;
        for (int32_t i = 1; i < total1; ++i) {
            const char x = text[i];
            if (text[i - 1] == ' ') {
                if (x == '?' || x == '!' || x == '.' || x == ',') {  // " ?", " !", " .", " ,"
                    total--;  // remove space
                }
            }
            text[total++] = x;
        }

        // second pass: strip single apostrophe between spaces
        const int32_t total2 = total;
        total = total ? 1 : 0;
        for (int32_t i = 1; i < total2; ++i) {
            const char x = text[i];
            if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') {  // " ' "
                total--;           // remove prev space
                text[++i] = '\0';  // remove next space
            }
            text[total++] = x;
        }

        // third pass: apostrophe contractions  //NOTE: this makes sense?
        const int32_t total3 = total;
        total = total ? 1 : 0;
        for (int32_t i = 1; i < total3; ++i) {
            const char x = text[i];
            if (text[i - 1] == ' ') {
                if (x == '\'' && i + 1 < total3) {
                    const char x1 = text[i + 1];
                    if (x1 == 't' || x1 == 'd') {  // " 't", " 'd"
                        //total--;  // remove space
                    } else if (x1 == 's' || x1 == 'm') {  // " 's", " 'm"
                        total--;  // remove space
                    } else if (i + 2 < total3) {
                        const char x2 = text[i + 2];
                        if ((x1 == 'l' && x2 == 'l')) {  // " 'll"
                            //total--;  // remove space
                        } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) {  // " 're", " 've"
                            total--;  // remove space
                        } else {
                            //total--;  // remove space
                        }
                    } else {
                        //total--;  // remove space
                    }
                }
            }
            text[total++] = x;
        }
    }

    return total <= text_len_max ? total : -total;
}

std::string llama_detokenize(const struct llama_vocab & vocab, const std::vector<llama_token> & tokens, bool special) {
    std::string text;
    text.resize(std::max(text.capacity(), tokens.size()));
    int32_t n_chars = llama_detokenize_impl(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
    if (n_chars < 0) {
        text.resize(-n_chars);
        n_chars = llama_detokenize_impl(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
        GGML_ASSERT(n_chars <= (int32_t)text.size());  // whitespace trimming is performed after per-token detokenization
    }

    text.resize(n_chars);

    // NOTE: the original tokenizer decodes bytes after collecting the pieces.
    return text;
}