File size: 35,112 Bytes
b664585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "ggml-cpu.h"
#include "ggml-opt.h"
#include <cmath>
#include <cinttypes>
#include <random>
#include <string>
#include <thread>
#include <vector>
static bool almost_equal(const double a, const double b, const double atol) {
return fabs(a - b) < atol;
}
constexpr int64_t ne_datapoint = 2;
constexpr int64_t ne_label = 1;
constexpr int64_t ndata = 6;
struct helper_ctx_data {
std::vector<ggml_opt_dataset_t> datasets_supervised;
std::vector<struct ggml_tensor *> data_batch;
std::vector<struct ggml_tensor *> labels_batch;
ggml_opt_dataset_t dataset_unsupervised;
struct ggml_context * ctx_static;
struct ggml_context * ctx_compute;
struct ggml_opt_params opt_params;
ggml_opt_context_t opt_ctx;
struct ggml_tensor * inputs;
struct ggml_tensor * weights;
struct ggml_tensor * outputs;
ggml_backend_buffer_t buf;
ggml_opt_result_t result;
ggml_opt_result_t result2;
};
// These default values make it easier to check optimization results vs. expected values.
static ggml_opt_optimizer_params helper_get_test_opt_pars(void * userdata) {
ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(userdata);
result.adamw.alpha = 1.0f;
result.adamw.beta1 = 0.0f;
result.adamw.beta2 = 0.0f;
result.adamw.eps = 0.0f;
return result;
}
static helper_ctx_data helper_get_ctx_data(
ggml_backend_sched_t backend_sched,
ggml_backend_t backend,
const bool init_opt_ctx = true,
const bool optimizer_defaults = true,
int64_t nbatch_logical = 1,
int64_t nbatch_physical = 1,
enum ggml_opt_loss_type loss_type = GGML_OPT_LOSS_TYPE_SUM) {
std::vector<ggml_opt_dataset_t> datasets(ndata);
for (int64_t ndata_shard = 1; ndata_shard <= ndata; ++ndata_shard) {
ggml_opt_dataset_t dataset = ggml_opt_dataset_init(ne_datapoint, ne_label, ndata, ndata_shard);
float * data = ggml_get_data_f32(ggml_opt_dataset_data( dataset));
float * labels = ggml_get_data_f32(ggml_opt_dataset_labels(dataset));
for (int64_t idata = 0; idata < ndata; ++idata) {
for (int64_t id = 0; id < ne_datapoint; ++id) {
data[ idata*ne_datapoint + id] = 16*idata + id;
}
for (int64_t il = 0; il < ne_label; ++il) {
labels[idata*ne_label + il] = 16*(16*idata + il);
}
}
datasets[ndata_shard-1] = dataset;
}
ggml_opt_dataset_t dataset_unsupervised = ggml_opt_dataset_init(1, 0, ndata, /*ndata_shard =*/ 1);
float * data = ggml_get_data_f32(ggml_opt_dataset_data(dataset_unsupervised));
for (int64_t idata = 0; idata < ndata; ++idata) {
data[idata] = idata;
}
struct ggml_context * ctx_static;
struct ggml_context * ctx_compute;
{
struct ggml_init_params params = {
/*.mem_size =*/ (2*ndata + 2)*ggml_tensor_overhead(),
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
ctx_static = ggml_init(params);
}
{
struct ggml_init_params params = {
/*.mem_size =*/ GGML_DEFAULT_GRAPH_SIZE*ggml_tensor_overhead() + 3*ggml_graph_overhead(),
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
ctx_compute = ggml_init(params);
}
std::vector<struct ggml_tensor *> data_batch(ndata);
std::vector<struct ggml_tensor *> labels_batch(ndata);
for (int64_t ndata_batch = 1; ndata_batch <= ndata; ++ndata_batch) {
data_batch[ndata_batch-1] = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, ndata_batch*ne_datapoint);
labels_batch[ndata_batch-1] = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, ndata_batch*ne_label);
}
struct ggml_tensor * inputs = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, nbatch_physical);
ggml_set_name(inputs, "inputs");
struct ggml_tensor * weights = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1);
ggml_set_name(weights, "weights");
ggml_set_param(ctx_static, weights);
struct ggml_tensor * intermediary = ggml_add(ctx_compute, inputs, weights);
struct ggml_tensor * outputs = ggml_scale(ctx_compute, intermediary, 1.0f);
ggml_set_name(outputs, "outputs");
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx_static, backend);
const float w0 = float(ndata)/2;
ggml_backend_tensor_set(weights, &w0, 0, sizeof(float));
GGML_ASSERT(nbatch_logical % nbatch_physical == 0);
const int32_t opt_period = nbatch_logical / nbatch_physical;
struct ggml_opt_params opt_params = ggml_opt_default_params(backend_sched, ctx_compute, inputs, outputs, loss_type);
opt_params.opt_period = opt_period;
if (!optimizer_defaults) {
opt_params.get_opt_pars = helper_get_test_opt_pars;
}
ggml_opt_context_t opt_ctx = init_opt_ctx ? ggml_opt_init(opt_params) : nullptr;
ggml_opt_result_t result = ggml_opt_result_init();
ggml_opt_result_t result2 = ggml_opt_result_init();
return {datasets, data_batch, labels_batch, dataset_unsupervised, ctx_static, ctx_compute, opt_params, opt_ctx, inputs, weights, outputs, buf, result, result2};
}
static void helper_free_ctx_data(struct helper_ctx_data ctx_data) {
ggml_opt_result_free(ctx_data.result);
ggml_opt_result_free(ctx_data.result2);
ggml_opt_free(ctx_data.opt_ctx);
ggml_backend_buffer_free(ctx_data.buf);
ggml_free(ctx_data.ctx_static);
ggml_free(ctx_data.ctx_compute);
for (ggml_opt_dataset_t dataset : ctx_data.datasets_supervised) {
ggml_opt_dataset_free(dataset);
}
ggml_opt_dataset_free(ctx_data.dataset_unsupervised);
}
static void helper_after_test(
const char * func, const bool high_level, const std::string options,
const std::string subtest, const bool subtest_ok, int & ntest, int & npass) {
printf(" %s(high_level=%s%s, subtest=%s): ",
func, high_level ? "yes" : "no", options.c_str(), subtest.c_str());
if (subtest_ok) {
printf("\033[1;32mOK\033[0m\n");
npass++;
} else {
printf("\033[1;31mFAIL\033[0m\n");
}
ntest++;
}
static std::pair<int, int> test_dataset(ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool shuffle) {
int ntest = 0;
int npass = 0;
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend);
for (int64_t ndata_shard = 1; ndata_shard <= ndata; ++ndata_shard) {
ggml_opt_dataset_t dataset = cd.datasets_supervised[ndata_shard-1];
if (shuffle) {
ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1);
}
for (int64_t ndata_batch = 1; ndata_batch <= ndata; ++ndata_batch) {
if (ndata_batch % ndata_shard != 0) {
continue;
}
bool subtest_ok = true;
struct ggml_tensor * data_batch = cd.data_batch[ndata_batch-1];
struct ggml_tensor * labels_batch = cd.labels_batch[ndata_batch-1];
std::vector<float> data(ggml_nelements( data_batch));
std::vector<float> labels(ggml_nelements(labels_batch));
std::vector<int64_t> idata_shuffled;
const int64_t nbatches = ndata / ndata_batch;
for (int64_t ibatch = 0; ibatch < nbatches; ++ibatch) {
ggml_opt_dataset_get_batch(dataset, data_batch, labels_batch, ibatch);
ggml_backend_tensor_get( data_batch, data.data(), 0, ggml_nbytes( data_batch));
ggml_backend_tensor_get(labels_batch, labels.data(), 0, ggml_nbytes(labels_batch));
for (int64_t idata_batch = 0; idata_batch < ndata_batch; ++idata_batch) {
const int64_t idata = ibatch*ndata_batch + idata_batch;
const int64_t idata_found = data[idata_batch*ne_datapoint] / 16;
subtest_ok = subtest_ok && (shuffle || idata_found == idata);
idata_shuffled.push_back(idata_found);
for (int64_t id = 0; id < ne_datapoint; ++id) {
if (data[ idata_batch*ne_datapoint + id] != 16*idata_found + id) {
subtest_ok = false;
}
}
for (int64_t il = 0; il < ne_label; ++il) {
if (labels[idata_batch*ne_label + il] != 16*(16*idata_found + il)) {
subtest_ok = false;
}
}
}
}
if (!shuffle || ndata % ndata_batch == 0) {
const int ndata_max = (ndata / ndata_batch) * ndata_batch;
for (int64_t idata = 0; subtest_ok && idata < ndata_max; ++idata) {
int ninstances = 0;
for (int64_t id : idata_shuffled) {
ninstances += id == idata;
}
if (ninstances != 1) {
subtest_ok = false;
}
}
}
printf(" %s(shuffle=%s, ndata_shard=%" PRId64 ", ndata_batch=%" PRId64 "): ",
__func__, shuffle ? "yes" : "no", ndata_shard, ndata_batch);
if (subtest_ok) {
printf("\033[1;32mOK\033[0m\n");
npass++;
} else {
printf("\033[1;31mFAIL\033[0m\n");
}
ntest++;
}
}
helper_free_ctx_data(cd);
return std::make_pair(npass, ntest);
}
static std::pair<int, int> test_grad(ggml_backend_sched_t backend_sched, ggml_backend_t backend) {
int ntest = 0;
int npass = 0;
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false,
/*nbatch_logical =*/ 999999, /*nbatch_physical =*/ 1);
std::vector<float> grad_history(ndata);
for (int64_t idata = 0; idata < ndata; ++idata) {
grad_history[idata] = NAN;
}
for (int idata = 0; idata < ndata; ++idata) {
const float idataf = idata;
ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs));
ggml_opt_forward_backward(cd.opt_ctx, cd.result);
ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata, 0, sizeof(float));
}
{
bool subtest_ok = true;
for (int idata = 0; idata < ndata; ++idata) {
if (grad_history[idata] != idata + 1) {
subtest_ok = false;
}
}
printf(" %s(): ", __func__);
if (subtest_ok) {
printf("\033[1;32mOK\033[0m\n");
npass++;
} else {
printf("\033[1;31mFAIL\033[0m\n");
}
ntest++;
}
helper_free_ctx_data(cd);
return std::make_pair(npass, ntest);
}
static void helper_after_test_forward_backward(
const char * func, const bool high_level, const bool shuffle,
const std::string subtest, const bool subtest_ok, int & ntest, int & npass) {
std::string options = ", shuffle=";
options += shuffle ? "yes" : "no";
helper_after_test(func, high_level, options, subtest, subtest_ok, ntest, npass);
}
static std::pair<int, int> test_forward_backward(
ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool high_level, const bool shuffle) {
int ntest = 0;
int npass = 0;
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false);
struct ggml_tensor * loss = ggml_opt_loss(cd.opt_ctx);
std::vector<float> loss_history(ndata);
for (int64_t idata = 0; idata < ndata; ++idata) {
loss_history[idata] = NAN;
}
{
int64_t ndata;
ggml_opt_result_ndata(cd.result, &ndata);
double loss;
double loss_unc;
ggml_opt_result_loss(cd.result, &loss, &loss_unc);
double accuracy;
double accuracy_unc;
ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc);
const bool subtest_ok = ndata == 0 && loss == 0.0 && std::isnan(loss_unc) && std::isnan(accuracy) && std::isnan(accuracy_unc);
helper_after_test_forward_backward(__func__, high_level, shuffle, "results_initial", subtest_ok, ntest, npass);
}
if (high_level) {
ggml_opt_dataset_t dataset = cd.dataset_unsupervised;
if (shuffle) {
ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1);
}
ggml_opt_epoch(cd.opt_ctx, dataset, nullptr, cd.result, 0, nullptr, nullptr);
} else {
for (int idata = 0; idata < ndata; ++idata) {
const float idataf = idata;
ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs));
ggml_opt_forward(cd.opt_ctx, cd.result);
ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float));
}
}
{
float weights;
ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float));
const bool subtest_ok = weights == ndata/2;
helper_after_test_forward_backward(__func__, high_level, shuffle, "weights_after_forward", subtest_ok, ntest, npass);
}
{
int64_t ndata;
ggml_opt_result_ndata(cd.result, &ndata);
bool subtest_ok = ndata == 6;
double loss;
double loss_unc;
ggml_opt_result_loss(cd.result, &loss, &loss_unc);
subtest_ok = subtest_ok && loss == 33.0 && almost_equal(loss_unc, sqrt(3.5), 1e-10);
double accuracy;
double accuracy_unc;
ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc);
subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc);
helper_after_test_forward_backward(__func__, high_level, shuffle, "results_after_forward", subtest_ok, ntest, npass);
}
float w0;
ggml_backend_tensor_get(cd.weights, &w0, 0, sizeof(float));
for (int i = 0; i < 10; ++i) {
ggml_opt_forward_backward(cd.opt_ctx, nullptr);
}
ggml_backend_tensor_set(cd.weights, &w0, 0, sizeof(float));
ggml_opt_reset(cd.opt_ctx, /*optimizer =*/ false);
ggml_opt_result_reset(cd.result);
for (int64_t idata = 0; idata < ndata; ++idata) {
loss_history[idata] = NAN;
}
if (high_level) {
ggml_opt_dataset_t dataset = cd.dataset_unsupervised;
if (shuffle) {
ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1);
}
ggml_opt_epoch(cd.opt_ctx, dataset, cd.result, nullptr, ndata, nullptr, nullptr);
} else {
for (int idata = 0; idata < ndata; ++idata) {
const float idataf = idata;
ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs));
ggml_opt_forward_backward(cd.opt_ctx, cd.result);
ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float));
}
}
{
float weights;
ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float));
const bool subtest_ok = weights == -ndata/2;
helper_after_test_forward_backward(__func__, high_level, shuffle, "weights_after_forward_backward", subtest_ok, ntest, npass);
}
{
int64_t ndata;
ggml_opt_result_ndata(cd.result, &ndata);
bool subtest_ok = ndata == 6;
double loss;
double loss_unc;
ggml_opt_result_loss(cd.result, &loss, &loss_unc);
subtest_ok = subtest_ok && loss == 18.0 && (shuffle || loss_unc == 0.0);
double accuracy;
double accuracy_unc;
ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc);
subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc);
helper_after_test_forward_backward(__func__, high_level, shuffle, "result_after_forward_backward", subtest_ok, ntest, npass);
}
helper_free_ctx_data(cd);
return std::make_pair(npass, ntest);
}
static std::pair<int, int> test_epoch_vs_fit(ggml_backend_sched_t backend_sched, ggml_backend_t backend) {
int ntest = 0;
int npass = 0;
float weights_epoch;
float weights_fit;
{
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true);
ggml_opt_dataset_t dataset = cd.dataset_unsupervised;
ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1);
ggml_opt_epoch(cd.opt_ctx, dataset, cd.result, nullptr, ndata, nullptr, nullptr);
ggml_backend_tensor_get(cd.weights, &weights_epoch, 0, ggml_nbytes(cd.weights));
helper_free_ctx_data(cd);
}
{
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ false);
ggml_opt_dataset_t dataset = cd.dataset_unsupervised;
ggml_opt_fit(backend_sched, cd.ctx_compute, cd.inputs, cd.outputs, dataset,
GGML_OPT_LOSS_TYPE_SUM, ggml_opt_get_default_optimizer_params, 1, 1, 0.0f, true);
ggml_backend_tensor_get(cd.weights, &weights_fit, 0, ggml_nbytes(cd.weights));
helper_free_ctx_data(cd);
}
const bool subtest_ok = weights_epoch == weights_fit;
printf(" %s(): ", __func__);
if (subtest_ok) {
printf("\033[1;32mOK\033[0m\n");
npass++;
} else {
printf("\033[1;31mFAIL\033[0m\n");
}
ntest++;
return std::make_pair(npass, ntest);
}
static void helper_after_test_idata_split(
const char * func, const bool high_level, const int epoch,
const std::string subtest, const bool subtest_ok, int & ntest, int & npass) {
std::string options = ", epoch=";
options += std::to_string(epoch);
helper_after_test(func, high_level, options, subtest, subtest_ok, ntest, npass);
}
static std::pair<int, int> test_idata_split(ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool high_level) {
int ntest = 0;
int npass = 0;
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false);
struct ggml_tensor * loss = ggml_opt_loss(cd.opt_ctx);
const int idata_split = ndata * 2/3;
std::vector<float> loss_history(ndata);
for (int64_t idata = 0; idata < ndata; ++idata) {
loss_history[idata] = NAN;
}
for (int epoch = 1; epoch <= 4; ++epoch) {
if (high_level) {
ggml_opt_epoch(cd.opt_ctx, cd.dataset_unsupervised, cd.result, cd.result2, idata_split, nullptr, nullptr);
} else {
int idata = 0;
for (; idata < idata_split; ++idata) {
const float idataf = idata;
ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs));
ggml_opt_forward_backward(cd.opt_ctx, cd.result);
ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float));
}
for (; idata < ndata; ++idata) {
const float idataf = idata;
ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs));
ggml_opt_forward(cd.opt_ctx, cd.result2);
ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float));
}
}
{
float weights;
ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float));
const bool subtest_ok = weights == ndata/2 - epoch*idata_split;
helper_after_test_idata_split(__func__, high_level, epoch, "weights", subtest_ok, ntest, npass);
}
{
int64_t ndata_result;
ggml_opt_result_ndata(cd.result, &ndata_result);
bool subtest_ok = ndata_result == idata_split;
double loss;
double loss_unc;
ggml_opt_result_loss(cd.result, &loss, &loss_unc);
subtest_ok = subtest_ok && loss == 28.0 - epoch*16.0 && loss_unc == 0.0;
double accuracy;
double accuracy_unc;
ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc);
subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc);
helper_after_test_idata_split(__func__, high_level, epoch, "results_backward", subtest_ok, ntest, npass);
}
{
int64_t ndata_result;
ggml_opt_result_ndata(cd.result2, &ndata_result);
bool subtest_ok = ndata_result == ndata - idata_split;
double loss;
double loss_unc;
ggml_opt_result_loss(cd.result2, &loss, &loss_unc);
subtest_ok = subtest_ok && loss == 15.0 - epoch*8 && almost_equal(loss_unc, sqrt(0.5), 1e-10);
double accuracy;
double accuracy_unc;
ggml_opt_result_accuracy(cd.result2, &accuracy, &accuracy_unc);
subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc);
helper_after_test_idata_split(__func__, high_level, epoch, "results_forward", subtest_ok, ntest, npass);
}
ggml_opt_result_reset(cd.result);
ggml_opt_result_reset(cd.result2);
}
helper_free_ctx_data(cd);
return std::make_pair(npass, ntest);
}
static void helper_after_test_gradient_accumulation(
const char * func, const int nbatch_physical, const enum ggml_opt_loss_type loss_type, const int epoch,
const std::string subtest, const bool subtest_ok, int & ntest, int & npass) {
std::string options = ", nbatch_physical=";
options += std::to_string(nbatch_physical);
options += ", loss_type=";
options += loss_type == GGML_OPT_LOSS_TYPE_MEAN ? "mean" : "sum";
options += ", epoch=";
options += std::to_string(epoch);
helper_after_test(func, false, options, subtest, subtest_ok, ntest, npass);
}
static std::pair<int, int> test_gradient_accumulation(
ggml_backend_sched_t backend_sched, ggml_backend_t backend, const int32_t nbatch_physical, const enum ggml_opt_loss_type loss_type) {
int ntest = 0;
int npass = 0;
struct helper_ctx_data cd = helper_get_ctx_data(
backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false, /*nbatch_logical =*/ 6, nbatch_physical, loss_type);
struct ggml_tensor * loss = ggml_opt_loss(cd.opt_ctx);
std::vector<float> grad_history(ndata);
for (int64_t idata = 0; idata < ndata; ++idata) {
grad_history[idata] = NAN;
}
for (int epoch = 1; epoch <= 4; ++epoch) {
if (nbatch_physical == 1) {
for (int idata = 0; idata < ndata; ++idata) {
const float idataf = idata;
ggml_backend_tensor_set(cd.inputs, &idataf, 0, 1*sizeof(float));
ggml_opt_forward_backward(cd.opt_ctx, cd.result);
ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata, 0, 1*sizeof(float));
}
} else if (nbatch_physical == 2) {
for (int idata = 0; idata < ndata; idata += 2) {
const float idataf[2] = {float(idata + 0), float(idata + 1)};
ggml_backend_tensor_set(cd.inputs, idataf, 0, 2*sizeof(float));
ggml_opt_forward_backward(cd.opt_ctx, cd.result);
grad_history[idata + 0] = 0.0f;
ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata + 1, 0, 1*sizeof(float));
}
} else {
GGML_ASSERT(false);
}
{
GGML_ASSERT(ndata == 6);
constexpr double atol = 1e-6;
bool subtest_ok = true;
if (loss_type == GGML_OPT_LOSS_TYPE_SUM) {
if (nbatch_physical == 1) {
subtest_ok = subtest_ok && almost_equal(grad_history[0], 1.0, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[2], 3.0, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[4], 5.0, atol);
} else {
subtest_ok = subtest_ok && almost_equal(grad_history[0], 0.0, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[2], 0.0, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[4], 0.0, atol);
}
subtest_ok = subtest_ok && almost_equal(grad_history[1], 2.0, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[3], 4.0, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[5], 0.0, atol);
} else if (loss_type == GGML_OPT_LOSS_TYPE_MEAN) {
if (nbatch_physical == 1) {
subtest_ok = subtest_ok && almost_equal(grad_history[0], 1.0/ndata, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[2], 3.0/ndata, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[4], 5.0/ndata, atol);
} else {
subtest_ok = subtest_ok && almost_equal(grad_history[0], 0.0/ndata, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[2], 0.0/ndata, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[4], 0.0/ndata, atol);
}
subtest_ok = subtest_ok && almost_equal(grad_history[1], 2.0/ndata, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[3], 4.0/ndata, atol);
subtest_ok = subtest_ok && almost_equal(grad_history[5], 0.0/ndata, atol);
} else {
GGML_ASSERT(false);
}
helper_after_test_gradient_accumulation(__func__, nbatch_physical, loss_type, epoch, "grads", subtest_ok, ntest, npass);
}
{
float weights;
ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float));
const bool subtest_ok = weights == (ndata/2) - epoch;
helper_after_test_gradient_accumulation(__func__, nbatch_physical, loss_type, epoch, "weights", subtest_ok, ntest, npass);
}
{
int64_t ndata_result;
ggml_opt_result_ndata(cd.result, &ndata_result);
bool subtest_ok = ndata_result == ndata/nbatch_physical;
double loss;
ggml_opt_result_loss(cd.result, &loss, /*loss_unc =*/ nullptr);
if (loss_type == GGML_OPT_LOSS_TYPE_SUM) {
subtest_ok = subtest_ok && loss == (39.0 - epoch*6.0);
} else if (loss_type == GGML_OPT_LOSS_TYPE_MEAN) {
subtest_ok = subtest_ok && almost_equal(loss, (39.0 - epoch*6.0) / ndata, 1e-6);
} else {
GGML_ASSERT(false);
}
double accuracy;
double accuracy_unc;
ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc);
subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc);
helper_after_test_gradient_accumulation(__func__, nbatch_physical, loss_type, epoch, "results", subtest_ok, ntest, npass);
}
ggml_opt_result_reset(cd.result);
}
helper_free_ctx_data(cd);
return std::make_pair(npass, ntest);
}
static ggml_opt_optimizer_params helper_get_regression_opt_pars(void * userdata) {
ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(userdata);
result.adamw.alpha = 0.1f;
return result;
}
static std::pair<int, int> test_regression(ggml_backend_sched_t backend_sched, ggml_backend_t backend) {
int ntest = 0;
int npass = 0;
// Test for simple regression with f(x) = a*x + b
constexpr int64_t ndata_regression = 201;
constexpr float a_true = 1.2f;
constexpr float b_true = 3.4f;
std::mt19937 gen(12345);
std::normal_distribution<float> nd{0.0f, 0.1f};
ggml_opt_dataset_t dataset = ggml_opt_dataset_init(1, 1, ndata_regression, ndata_regression);
float * data = ggml_get_data_f32(ggml_opt_dataset_data( dataset));
float * labels = ggml_get_data_f32(ggml_opt_dataset_labels(dataset));
constexpr float x_min = -100.0f;
constexpr float x_max = 100.0f;
for (int64_t idata = 0; idata < ndata_regression; ++idata) {
const float x = x_min + (x_max - x_min) * idata/(ndata_regression-1);
const float y = a_true*x + b_true + nd(gen);
data[idata] = x;
labels[idata] = y;
}
struct ggml_context * ctx_static;
struct ggml_context * ctx_compute;
{
struct ggml_init_params params = {
/*.mem_size =*/ 3*ggml_tensor_overhead(),
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
ctx_static = ggml_init(params);
}
{
struct ggml_init_params params = {
/*.mem_size =*/ GGML_DEFAULT_GRAPH_SIZE*ggml_tensor_overhead() + 3*ggml_graph_overhead(),
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
ctx_compute = ggml_init(params);
}
// The first dimension is the dimension of the datapoints, the second dimension is the number of datapoints.
struct ggml_tensor * x = ggml_new_tensor_2d(ctx_static, GGML_TYPE_F32, 1, ndata_regression);
ggml_set_name(x, "x");
struct ggml_tensor * a = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1);
ggml_set_name(a, "a");
ggml_set_param(ctx_static, a);
struct ggml_tensor * b = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1);
ggml_set_name(b, "b");
ggml_set_param(ctx_static, b);
struct ggml_tensor * f = ggml_add(ctx_compute, ggml_mul(ctx_compute, x, a), b);
ggml_set_name(f, "f");
ggml_set_param(ctx_static, f);
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx_static, backend);
const float a0 = 1.0f;
const float b0 = 3.0f;
ggml_backend_tensor_set(a, &a0, 0, sizeof(float));
ggml_backend_tensor_set(b, &b0, 0, sizeof(float));
ggml_opt_fit(backend_sched, ctx_compute, x, f, dataset, GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR,
helper_get_regression_opt_pars, 100, ndata_regression, 0.0f, true);
{
float a_fit;
ggml_backend_tensor_get(a, &a_fit, 0, sizeof(float));
float b_fit;
ggml_backend_tensor_get(b, &b_fit, 0, sizeof(float));
const bool subtest_ok = almost_equal(a_fit, a_true, 1e-2) && almost_equal(b_fit, b_true, 1e-2);
printf(" %s(subtest=weights): ", __func__);
if (subtest_ok) {
printf("\033[1;32mOK\033[0m\n");
npass++;
} else {
printf("\033[1;31mFAIL\033[0m\n");
}
ntest++;
}
ggml_backend_buffer_free(buf);
ggml_free(ctx_static);
ggml_opt_dataset_free(dataset);
return std::make_pair(npass, ntest);
}
static std::pair<int, int> test_backend(ggml_backend_sched_t backend_sched, ggml_backend_t backend) {
int npass = 0;
int ntest = 0;
for (bool shuffle : {false, true}) {
std::pair<int, int> partial = test_dataset(backend_sched, backend, shuffle);
npass += partial.first;
ntest += partial.second;
}
{
std::pair<int, int> partial = test_grad(backend_sched, backend);
npass += partial.first;
ntest += partial.second;
}
for (bool high_level : {false, true}){
for (bool shuffle : {false, true}) {
if (!high_level && shuffle) {
continue;
}
std::pair<int, int> partial = test_forward_backward(backend_sched, backend, high_level, shuffle);
npass += partial.first;
ntest += partial.second;
}
}
{
std::pair<int, int> partial = test_epoch_vs_fit(backend_sched, backend);
npass += partial.first;
ntest += partial.second;
}
for (bool high_level : {false, true}){
std::pair<int, int> partial = test_idata_split(backend_sched, backend, high_level);
npass += partial.first;
ntest += partial.second;
}
for (int32_t nbatch_physical : {2, 1}) {
for (enum ggml_opt_loss_type loss_type : {GGML_OPT_LOSS_TYPE_SUM, GGML_OPT_LOSS_TYPE_MEAN}) {
std::pair<int, int> partial = test_gradient_accumulation(backend_sched, backend, nbatch_physical, loss_type);
npass += partial.first;
ntest += partial.second;
}
}
{
std::pair<int, int> partial = test_regression(backend_sched, backend);
npass += partial.first;
ntest += partial.second;
}
return std::make_pair(npass, ntest);
}
int main(void) {
const size_t dev_count = ggml_backend_dev_count();
printf("Testing %zu devices\n\n", dev_count);
size_t n_ok = 0;
std::vector<ggml_backend_dev_t> devs;
std::vector<ggml_backend_t> backends;
for (size_t i = 0; i < dev_count; ++i) {
devs.push_back(ggml_backend_dev_get(i));
ggml_backend_t backend = ggml_backend_dev_init(devs[i], NULL);
GGML_ASSERT(backend != NULL);
if (ggml_backend_is_cpu(backend)) {
ggml_backend_cpu_set_n_threads(backend, std::thread::hardware_concurrency() / 2);
}
backends.push_back(backend);
}
for (size_t i = 0; i < dev_count; ++i) {
// Put the backend to be tested in front so that it's prioritized:
std::vector<ggml_backend_t> backends_modded = {backends[i]};
backends_modded.insert(backends_modded.end(), backends.begin(), backends.end());
ggml_backend_sched_t backend_sched = ggml_backend_sched_new(
backends_modded.data(), nullptr, backends_modded.size(), GGML_DEFAULT_GRAPH_SIZE, false);
printf("Backend %zu/%zu: %s\n", i + 1, dev_count, ggml_backend_dev_name(devs[i]));
printf(" Device description: %s\n", ggml_backend_dev_description(devs[i]));
size_t free, total; // NOLINT
ggml_backend_dev_memory(devs[i], &free, &total);
printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
printf("\n");
std::pair<int, int> result = test_backend(backend_sched, backends[i]);
printf(" %d/%d tests passed\n", result.first, result.second);
printf(" Backend %s: ", ggml_backend_name(backends[i]));
if (result.first == result.second) {
printf("\033[1;32mOK\033[0m\n");
n_ok++;
} else {
printf("\033[1;31mFAIL\033[0m\n");
}
printf("\n");
ggml_backend_sched_free(backend_sched);
}
for (ggml_backend_t backend : backends) {
ggml_backend_free(backend);
}
printf("%zu/%zu backends passed\n", n_ok, dev_count);
if (n_ok != dev_count) {
printf("\033[1;31mFAIL\033[0m\n");
return 1;
}
printf("\033[1;32mOK\033[0m\n");
return 0;
}
|