File size: 6,297 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#include "ggml.h"
#include "ggml-cpu.h"

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cassert>
#include <vector>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif

#define MAX_NARGS 3

#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))

#define GGML_SILU_FP16

//
// logging
//

#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif

#if (GGML_DEBUG >= 5)
#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_5(...)
#endif

#if (GGML_DEBUG >= 10)
#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_10(...)
#endif

#define GGML_PRINT(...) printf(__VA_ARGS__)

static float frand(void) {
    return (float)rand()/(float)RAND_MAX;
}

static int irand(int n) {
    if (n == 0) return 0;
    return rand()%n;
}

static void get_random_dims(int64_t * dims, int ndims) {
    dims[0] = dims[1] = dims[2] = dims[3] = 1;

    for (int i = 0; i < ndims; i++) {
        dims[i] = 1 + irand(4);
    }
}

static struct ggml_tensor * get_random_tensor_f32(
        struct ggml_context * ctx0,
        int ndims,
        const int64_t ne[],
        float fmin,
        float fmax) {
    struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);

    switch (ndims) {
        case 1:
            for (int i0 = 0; i0 < ne[0]; i0++) {
                ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
            }
            break;
        case 2:
            for (int i1 = 0; i1 < ne[1]; i1++) {
                for (int i0 = 0; i0 < ne[0]; i0++) {
                    ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
                }
            }
            break;
        case 3:
            for (int i2 = 0; i2 < ne[2]; i2++) {
                for (int i1 = 0; i1 < ne[1]; i1++) {
                    for (int i0 = 0; i0 < ne[0]; i0++) {
                        ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
                    }
                }
            }
            break;
        case 4:
            for (int i3 = 0; i3 < ne[3]; i3++) {
                for (int i2 = 0; i2 < ne[2]; i2++) {
                    for (int i1 = 0; i1 < ne[1]; i1++) {
                        for (int i0 = 0; i0 < ne[0]; i0++) {
                            ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
                        }
                    }
                }
            }
            break;
        default:
            assert(false);
    };

    return result;
}

static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
    struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);

    if (plan.work_size > 0) {
        buf.resize(plan.work_size);
        plan.work_data = buf.data();
    }

    ggml_graph_compute(graph, &plan);
}

int main(int /*argc*/, const char ** /*argv*/) {
    struct ggml_init_params params = {
        /* .mem_size   = */ 128*1024*1024,
        /* .mem_buffer = */ NULL,
        /* .no_alloc   = */ false,
    };

    std::vector<uint8_t> work_buffer;

    struct ggml_context * ctx0 = ggml_init(params);

    struct ggml_tensor * x;

    // rope f32
    for (int m = 0; m < 3; ++m) {
        const int ndims = 4;

        const int64_t n_rot = 128;
        const int64_t ne[4] = { 2*n_rot, 32, 73, 1 };

        const int n_past_0 = 100;
        const int n_past_2 = 33;

        struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
        struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
        struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);

        for (int i = 0; i < ne[2]; ++i) {
            ((int32_t *) p0->data)[i] = n_past_0 + i;
            ((int32_t *) p1->data)[i] = n_past_2 - n_past_0;
            ((int32_t *) p2->data)[i] = n_past_2 + i;
        }

        // test mode 0, 2, 4 (standard, GPT-NeoX, GLM)
        const int mode = m == 0 ? 0 : m == 1 ? 2 : 4;

        x = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);

        // 100, 101, 102, ..., 172
        struct ggml_tensor * r0 = ggml_rope(ctx0, x,  p0, n_rot, mode);
        // -67, -67, -67, ..., -67
        struct ggml_tensor * r1 = ggml_rope(ctx0, r0, p1, n_rot, mode); // "context swap", i.e. forget n_past_0 - n_past_2 tokens

        //  33,  34,  35, ..., 105
        struct ggml_tensor * r2 = ggml_rope(ctx0, x,  p2, n_rot, mode);

        ggml_cgraph * gf = ggml_new_graph(ctx0);

        ggml_build_forward_expand(gf, r0);
        ggml_build_forward_expand(gf, r1);
        ggml_build_forward_expand(gf, r2);

        ggml_graph_compute_helper(work_buffer, gf, 4);

        // check that r1 and r2 are the same
        {
            double sum0 = 0.0f;
            double sum1 = 0.0f;
            double diff = 0.0f;

            const float * r1_data = (float *) r1->data;
            const float * r2_data = (float *) r2->data;

            const int n_elements = ggml_nelements(r1);

            for (int i = 0; i < n_elements; ++i) {
                sum0 += fabs(r1_data[i]);
                sum1 += fabs(r2_data[i]);
                diff += fabs(r1_data[i] - r2_data[i]);
                //if (fabs(r1_data[i] - r2_data[i]) > 0.0001f) {
                //    printf("%d: %f %f\n", i, r1_data[i], r2_data[i]);
                //    printf("diff: %f\n", fabs(r1_data[i] - r2_data[i]));
                //}
            }

            //for (int i = 4096; i < 4096 + 128; ++i) {
            //    printf("%f %f\n", r1_data[i], r2_data[i]);
            //}

            printf("mode: %d\n", mode);
            printf("sum0: %f\n", sum0);
            printf("sum1: %f\n", sum1);
            printf("diff: %f\n", diff);
            printf("rel err: %f\n", diff / sum0);
            printf("rel err: %f\n", diff / sum1);

            GGML_ASSERT(diff / sum0 < 0.0001f);
            GGML_ASSERT(diff / sum1 < 0.0001f);
        }
    }

    ggml_free(ctx0);

    return 0;
}