File size: 4,796 Bytes
b664585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
#include "llama.h"
#include "common.h"
#include "unicode.h"
#include "console.h"
#include <cassert>
#include <codecvt>
#include <cstdio>
#include <cstring>
#include <locale>
#include <string>
#include <thread>
#include <vector>
#include <atomic>
int main(int argc, char **argv) {
if (argc < 2 || argc > 3) {
fprintf(stderr, "Usage: %s <vocab-file> [--ignore-merges]\n", argv[0]);
return 1;
}
const std::string fname = argv[1];
bool ignore_merges = false;
if (argc == 3) {
if (std::strcmp(argv[2], "--ignore-merges") != 0) {
fprintf(stderr, "Usage: %s <vocab-file> [--ignore-merges]\n", argv[0]);
return 1;
}
ignore_merges = true;
}
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
if (ignore_merges) {
fprintf(stderr, "%s : ignoring merges for tokens inside vocab\n", __func__);
}
llama_model * model;
llama_context * ctx;
llama_backend_init();
// load the vocab
{
auto mparams = llama_model_default_params();
mparams.vocab_only = true;
model = llama_load_model_from_file(fname.c_str(), mparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
return 1;
}
auto cparams = llama_context_default_params();
ctx = llama_new_context_with_model(model, cparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
llama_free_model(model);
return 1;
}
}
//GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_BPE);
if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_BPE) {
return 99;
}
#ifdef _WIN32
// We need this for unicode console support
console::init(false, false);
atexit([]() { console::cleanup(); });
#endif
const int n_vocab = llama_n_vocab(model);
for (int i = 0; i < n_vocab; ++i) {
std::string str = common_detokenize(ctx, std::vector<int>(1, i));
try {
auto cps = unicode_cpts_from_utf8(str);
std::vector<llama_token> tokens = common_tokenize(ctx, str, false, true);
if (ignore_merges && tokens.size() > 1) {
fprintf(stderr,
"%s : error: token %d detokenizes to '%s'(%zu) but "
"tokenization of this to multiple tokens: [",
__func__, i, str.c_str(), str.length());
fprintf(stderr, "%d", tokens[0]);
for (size_t i = 1; i < tokens.size(); i++) {
fprintf(stderr, ", %d", tokens[i]);
}
fprintf(stderr, "]\n");
return 2;
}
std::string check = common_detokenize(ctx, tokens);
if (check != str) {
fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n",
__func__, i, str.c_str(), str.length(), check.c_str(), check.length());
return 2;
}
}
catch (const std::invalid_argument &) {
//fprintf(stderr, "%s : info: utf8 conversion %d '%s'\n", __func__, i, str.c_str());
}
}
// unicode
{
const int nthread = std::thread::hardware_concurrency();
std::vector<std::thread> threads(nthread);
std::atomic_int errcode = {};
for (int i = 0; i < nthread; ++i) {
threads[i] = std::thread([i, nthread, ctx, &errcode]() {
for (uint32_t cp = i; !errcode && cp < 0x00110000; cp += nthread) {
if ((0x0000D800 <= cp && cp <= 0x0000DFFF) || // surrogates \p{Cs}
(0x00040000 <= cp && cp <= 0x000E0000)) { // undefined \p{Cn}
continue;
}
std::string str = unicode_cpt_to_utf8(cp);
std::vector<llama_token> tokens = common_tokenize(ctx, str, false);
std::string check = common_detokenize(ctx, tokens);
if (cp != 9601 && str != check) {
fprintf(stderr, "error: codepoint 0x%x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
cp, check.c_str(), check.length(), str.c_str(), str.length());
errcode = 3;
}
}
});
}
for (auto & t : threads) {
t.join();
}
if (errcode) {
return errcode;
}
}
llama_free_model(model);
llama_free(ctx);
llama_backend_free();
return 0;
}
|