File size: 27,382 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
// Various helper functions and utilities

#pragma once

#include "llama.h"

#include <string>
#include <vector>
#include <sstream>

#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
#else
#define DIRECTORY_SEPARATOR '/'
#endif // _WIN32

#define die(msg)          do { fputs("error: " msg "\n", stderr);                exit(1); } while (0)
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)

#define print_build_info() do {                                                                     \
    fprintf(stderr, "%s: build = %d (%s)\n",      __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);      \
    fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);    \
} while(0)

#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"

struct common_lora_adapter_info {
    std::string path;
    float scale;
};

struct common_lora_adapter_container : common_lora_adapter_info {
    struct llama_lora_adapter * adapter;
};

using llama_tokens = std::vector<llama_token>;

// build info
extern int LLAMA_BUILD_NUMBER;
extern char const * LLAMA_COMMIT;
extern char const * LLAMA_COMPILER;
extern char const * LLAMA_BUILD_TARGET;

struct common_control_vector_load_info;

//
// CPU utils
//

struct cpu_params {
    int      n_threads                   = -1;
    bool     cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
    bool     mask_valid                  = false;   // Default: any CPU
    enum ggml_sched_priority  priority   = GGML_SCHED_PRIO_NORMAL;  // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
    bool     strict_cpu                  = false;   // Use strict CPU placement
    uint32_t poll                        = 50;      // Polling (busywait) level (0 - no polling, 100 - mostly polling)
};

int32_t cpu_get_num_physical_cores();
int32_t cpu_get_num_math();

//
// Common params
//

enum llama_example {
    LLAMA_EXAMPLE_COMMON,
    LLAMA_EXAMPLE_SPECULATIVE,
    LLAMA_EXAMPLE_MAIN,
    LLAMA_EXAMPLE_INFILL,
    LLAMA_EXAMPLE_EMBEDDING,
    LLAMA_EXAMPLE_PERPLEXITY,
    LLAMA_EXAMPLE_RETRIEVAL,
    LLAMA_EXAMPLE_PASSKEY,
    LLAMA_EXAMPLE_IMATRIX,
    LLAMA_EXAMPLE_BENCH,
    LLAMA_EXAMPLE_SERVER,
    LLAMA_EXAMPLE_CVECTOR_GENERATOR,
    LLAMA_EXAMPLE_EXPORT_LORA,
    LLAMA_EXAMPLE_LLAVA,
    LLAMA_EXAMPLE_LOOKUP,
    LLAMA_EXAMPLE_PARALLEL,

    LLAMA_EXAMPLE_COUNT,
};

enum common_sampler_type {
    COMMON_SAMPLER_TYPE_NONE        = 0,
    COMMON_SAMPLER_TYPE_DRY         = 1,
    COMMON_SAMPLER_TYPE_TOP_K       = 2,
    COMMON_SAMPLER_TYPE_TOP_P       = 3,
    COMMON_SAMPLER_TYPE_MIN_P       = 4,
  //COMMON_SAMPLER_TYPE_TFS_Z       = 5,
    COMMON_SAMPLER_TYPE_TYPICAL_P   = 6,
    COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
    COMMON_SAMPLER_TYPE_XTC         = 8,
    COMMON_SAMPLER_TYPE_INFILL      = 9,
};

// dimensionality reduction methods, used by cvector-generator
enum dimre_method {
    DIMRE_METHOD_PCA,
    DIMRE_METHOD_MEAN,
};

// sampling parameters
struct common_params_sampling {
    uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler

    int32_t n_prev             = 64;    // number of previous tokens to remember
    int32_t n_probs            = 0;     // if greater than 0, output the probabilities of top n_probs tokens.
    int32_t min_keep           = 0;     // 0 = disabled, otherwise samplers should return at least min_keep tokens
    int32_t top_k              = 40;    // <= 0 to use vocab size
    float   top_p              = 0.95f; // 1.0 = disabled
    float   min_p              = 0.05f; // 0.0 = disabled
    float   xtc_probability    = 0.00f; // 0.0 = disabled
    float   xtc_threshold      = 0.10f; // > 0.5 disables XTC
    float   typ_p              = 1.00f; // typical_p, 1.0 = disabled
    float   temp               = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
    float   dynatemp_range     = 0.00f; // 0.0 = disabled
    float   dynatemp_exponent  = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
    int32_t penalty_last_n     = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
    float   penalty_repeat     = 1.00f; // 1.0 = disabled
    float   penalty_freq       = 0.00f; // 0.0 = disabled
    float   penalty_present    = 0.00f; // 0.0 = disabled
    float   dry_multiplier     = 0.0f;  // 0.0 = disabled;      DRY repetition penalty for tokens extending repetition:
    float   dry_base           = 1.75f; // 0.0 = disabled;      multiplier * base ^ (length of sequence before token - allowed length)
    int32_t dry_allowed_length = 2;     // tokens extending repetitions beyond this receive penalty
    int32_t dry_penalty_last_n = -1;    // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
    int32_t mirostat           = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
    float   mirostat_tau       = 5.00f; // target entropy
    float   mirostat_eta       = 0.10f; // learning rate
    bool    penalize_nl        = false; // consider newlines as a repeatable token
    bool    ignore_eos         = false;
    bool    no_perf            = false; // disable performance metrics
    bool    timing_per_token   = false;

    std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"};     // default sequence breakers for DRY


    std::vector<enum common_sampler_type> samplers = {
        COMMON_SAMPLER_TYPE_DRY,
        COMMON_SAMPLER_TYPE_TOP_K,
        COMMON_SAMPLER_TYPE_TYPICAL_P,
        COMMON_SAMPLER_TYPE_TOP_P,
        COMMON_SAMPLER_TYPE_MIN_P,
        COMMON_SAMPLER_TYPE_XTC,
        COMMON_SAMPLER_TYPE_TEMPERATURE,
    };

    std::string grammar; // optional BNF-like grammar to constrain sampling

    std::vector<llama_logit_bias> logit_bias; // logit biases to apply

    // print the parameters into a string
    std::string print() const;
};

struct common_params_speculative {
    std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
    int32_t n_ctx        =     0; // draft context size
    int32_t n_max        =    16; // maximum number of tokens to draft during speculative decoding
    int32_t n_min        =     5; // minimum number of draft tokens to use for speculative decoding
    int32_t n_gpu_layers =    -1; // number of layers to store in VRAM for the draft model (-1 - use default)
    float   p_split      =  0.1f; // speculative decoding split probability
    float   p_min        =  0.9f; // minimum speculative decoding probability (greedy)

    struct cpu_params cpuparams;
    struct cpu_params cpuparams_batch;

    std::string model = ""; // draft model for speculative decoding                          // NOLINT
};

struct common_params {
    int32_t n_predict             =    -1; // new tokens to predict
    int32_t n_ctx                 =  4096; // context size
    int32_t n_batch               =  2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
    int32_t n_ubatch              =   512; // physical batch size for prompt processing (must be >=32 to use BLAS)
    int32_t n_keep                =     0; // number of tokens to keep from initial prompt
    int32_t n_chunks              =    -1; // max number of chunks to process (-1 = unlimited)
    int32_t n_parallel            =     1; // number of parallel sequences to decode
    int32_t n_sequences           =     1; // number of sequences to decode
    int32_t grp_attn_n            =     1; // group-attention factor
    int32_t grp_attn_w            =   512; // group-attention width
    int32_t n_print               =    -1; // print token count every n tokens (-1 = disabled)
    float   rope_freq_base        =  0.0f; // RoPE base frequency
    float   rope_freq_scale       =  0.0f; // RoPE frequency scaling factor
    float   yarn_ext_factor       = -1.0f; // YaRN extrapolation mix factor
    float   yarn_attn_factor      =  1.0f; // YaRN magnitude scaling factor
    float   yarn_beta_fast        = 32.0f; // YaRN low correction dim
    float   yarn_beta_slow        =  1.0f; // YaRN high correction dim
    int32_t yarn_orig_ctx         =     0; // YaRN original context length
    float   defrag_thold          =  0.1f; // KV cache defragmentation threshold

    // offload params
    std::vector<ggml_backend_dev_t> devices;         // devices to use for offloading
    int32_t n_gpu_layers                    =    -1; // number of layers to store in VRAM (-1 - use default)
    int32_t main_gpu                        =     0; // the GPU that is used for scratch and small tensors
    float   tensor_split[128]               =   {0}; // how split tensors should be distributed across GPUs
    enum llama_split_mode        split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs

    struct cpu_params cpuparams;
    struct cpu_params cpuparams_batch;

    ggml_backend_sched_eval_callback cb_eval = nullptr;
    void * cb_eval_user_data                 = nullptr;

    ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;

    enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
    enum llama_pooling_type      pooling_type      = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
    enum llama_attention_type    attention_type    = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings

    struct common_params_sampling sampling;
    struct common_params_speculative speculative;

    std::string model                = ""; // model path                                                    // NOLINT
    std::string model_alias          = "unknown"; // model alias                                            // NOLINT
    std::string model_url            = ""; // model url to download                                         // NOLINT
    std::string hf_token             = ""; // HF token                                                      // NOLINT
    std::string hf_repo              = ""; // HF repo                                                       // NOLINT
    std::string hf_file              = ""; // HF file                                                       // NOLINT
    std::string prompt               = "";                                                                  // NOLINT
    std::string prompt_file          = ""; // store the external prompt file name                           // NOLINT
    std::string path_prompt_cache    = ""; // path to file for saving/loading prompt eval state             // NOLINT
    std::string input_prefix         = ""; // string to prefix user inputs with                             // NOLINT
    std::string input_suffix         = ""; // string to suffix user inputs with                             // NOLINT
    std::string lookup_cache_static  = ""; // path of static ngram cache file for lookup decoding           // NOLINT
    std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding          // NOLINT
    std::string logits_file          = ""; // file for saving *all* logits                                  // NOLINT
    std::string rpc_servers          = ""; // comma separated list of RPC servers                           // NOLINT

    std::vector<std::string> in_files;   // all input files
    std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
    std::vector<llama_model_kv_override> kv_overrides;

    bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
    std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale

    std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale

    int32_t verbosity                  = 0;
    int32_t control_vector_layer_start = -1; // layer range for control vector
    int32_t control_vector_layer_end   = -1; // layer range for control vector

    int32_t ppl_stride      = 0;     // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
    int32_t ppl_output_type = 0;     // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
                                     //                                       (which is more convenient to use for plotting)
                                     //
    bool   hellaswag        = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
    size_t hellaswag_tasks  = 400;   // number of tasks to use when computing the HellaSwag score

    bool   winogrande       = false; // compute Winogrande score over random tasks from datafile supplied in prompt
    size_t winogrande_tasks = 0;     // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed

    bool   multiple_choice  = false;  // compute TruthfulQA score over random tasks from datafile supplied in prompt
    size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed

    bool   kl_divergence    = false; // compute KL divergence

    bool usage             = false; // print usage
    bool use_color         = false; // use color to distinguish generations and inputs
    bool special           = false; // enable special token output
    bool interactive       = false; // interactive mode
    bool interactive_first = false; // wait for user input immediately
    bool conversation      = false; // conversation mode (does not print special tokens and suffix/prefix)
    bool prompt_cache_all  = false; // save user input and generations to prompt cache
    bool prompt_cache_ro   = false; // open the prompt cache read-only and do not update it

    bool escape            = true;  // escape "\n", "\r", "\t", "\'", "\"", and "\\"
    bool multiline_input   = false; // reverse the usage of `\`
    bool simple_io         = false; // improves compatibility with subprocesses and limited consoles
    bool cont_batching     = true;  // insert new sequences for decoding on-the-fly
    bool flash_attn        = false; // flash attention
    bool no_perf           = false; // disable performance metrics
    bool ctx_shift         = true;  // context shift on inifinite text generation

    bool input_prefix_bos  = false; // prefix BOS to user inputs, preceding input_prefix
    bool logits_all        = false; // return logits for all tokens in the batch
    bool use_mmap          = true;  // use mmap for faster loads
    bool use_mlock         = false; // use mlock to keep model in memory
    bool verbose_prompt    = false; // print prompt tokens before generation
    bool display_prompt    = true;  // print prompt before generation
    bool dump_kv_cache     = false; // dump the KV cache contents for debugging purposes
    bool no_kv_offload     = false; // disable KV offloading
    bool warmup            = true;  // warmup run
    bool check_tensors     = false; // validate tensor data

    std::string cache_type_k = "f16"; // KV cache data type for the K
    std::string cache_type_v = "f16"; // KV cache data type for the V

    // multimodal models (see examples/llava)
    std::string mmproj = "";        // path to multimodal projector                                         // NOLINT
    std::vector<std::string> image; // path to image file(s)

    // embedding
    bool embedding         = false; // get only sentence embedding
    int32_t embd_normalize = 2;     // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
    std::string embd_out   = "";    // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
    std::string embd_sep   = "\n";  // separator of embeddings
    bool reranking         = false; // enable reranking support on server

    // server params
    int32_t port           = 8080;         // server listens on this network port
    int32_t timeout_read   = 600;          // http read timeout in seconds
    int32_t timeout_write  = timeout_read; // http write timeout in seconds
    int32_t n_threads_http = -1;           // number of threads to process HTTP requests (TODO: support threadpool)
    int32_t n_cache_reuse  = 0;            // min chunk size to reuse from the cache via KV shifting

    std::string hostname      = "127.0.0.1";
    std::string public_path   = "";                                                                         // NOLINT
    std::string chat_template = "";                                                                         // NOLINT
    bool enable_chat_template = true;

    std::vector<std::string> api_keys;

    std::string ssl_file_key  = "";                                                                         // NOLINT
    std::string ssl_file_cert = "";                                                                         // NOLINT

    // "advanced" endpoints are disabled by default for better security
    bool webui            = true;
    bool endpoint_slots   = false;
    bool endpoint_props   = false; // only control POST requests, not GET
    bool endpoint_metrics = false;

    bool log_json = false;

    std::string slot_save_path;

    float slot_prompt_similarity = 0.5f;

    // batched-bench params
    bool is_pp_shared = false;

    std::vector<int32_t> n_pp;
    std::vector<int32_t> n_tg;
    std::vector<int32_t> n_pl;

    // retrieval params
    std::vector<std::string> context_files; // context files to embed

    int32_t chunk_size = 64; // chunk size for context embedding

    std::string chunk_separator = "\n"; // chunk separator for context embedding

    // passkey params
    int32_t n_junk = 250; // number of times to repeat the junk text
    int32_t i_pos  = -1;  // position of the passkey in the junk text

    // imatrix params
    std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file

    int32_t n_out_freq  = 10; // output the imatrix every n_out_freq iterations
    int32_t n_save_freq =  0; // save the imatrix every n_save_freq iterations
    int32_t i_chunk     =  0; // start processing from this chunk

    bool process_output = false; // collect data for the output tensor
    bool compute_ppl    = true;  // whether to compute perplexity

    // cvector-generator params
    int n_pca_batch = 100;
    int n_pca_iterations = 1000;
    dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
    std::string cvector_outfile       = "control_vector.gguf";
    std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
    std::string cvector_negative_file = "examples/cvector-generator/negative.txt";

    bool spm_infill = false; // suffix/prefix/middle pattern for infill

    std::string lora_outfile = "ggml-lora-merged-f16.gguf";

    // batched-bench params
    bool batched_bench_output_jsonl = false;
};

// call once at the start of a program if it uses libcommon
// initializes the logging system and prints info about the build
void common_init();

std::string common_params_get_system_info(const common_params & params);

bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
bool set_process_priority(enum ggml_sched_priority prio);

//
// String utils
//

#ifdef __GNUC__
#ifdef __MINGW32__
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
#endif

LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
std::string string_format(const char * fmt, ...);

std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();

void string_replace_all(std::string & s, const std::string & search, const std::string & replace);

template<class T>
static std::vector<T> string_split(const std::string & str, char delim) {
    static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
    std::vector<T> values;
    std::istringstream str_stream(str);
    std::string token;
    while (std::getline(str_stream, token, delim)) {
        T value;
        std::istringstream token_stream(token);
        token_stream >> value;
        values.push_back(value);
    }
    return values;
}

template<>
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
{
    std::vector<std::string> parts;
    size_t begin_pos = 0;
    size_t separator_pos = input.find(separator);
    while (separator_pos != std::string::npos) {
        std::string part = input.substr(begin_pos, separator_pos - begin_pos);
        parts.emplace_back(part);
        begin_pos = separator_pos + 1;
        separator_pos = input.find(separator, begin_pos);
    }
    parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
    return parts;
}

bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);

std::string string_from(bool value);
std::string string_from(const std::vector<int> & values);
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);

//
// Filesystem utils
//

bool fs_validate_filename(const std::string & filename);
bool fs_create_directory_with_parents(const std::string & path);

std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);

//
// Model utils
//

struct common_init_result {
    struct llama_model   * model   = nullptr;
    struct llama_context * context = nullptr;
    std::vector<common_lora_adapter_container> lora_adapters;
};

struct common_init_result     common_init_from_params(common_params & params);

struct llama_model_params     common_model_params_to_llama  (      common_params & params);
struct llama_context_params   common_context_params_to_llama(const common_params & params);
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);

struct llama_model * common_load_model_from_url(
    const std::string & model_url,
    const std::string & local_path,
    const std::string & hf_token,
    const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(
    const std::string & repo,
    const std::string & remote_path,
    const std::string & local_path,
    const std::string & hf_token,
    const struct llama_model_params & params);

// clear LoRA adapters from context, then apply new list of adapters
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);

//
// Batch utils
//

void common_batch_clear(struct llama_batch & batch);

void common_batch_add(
                 struct llama_batch & batch,
                        llama_token   id,
                          llama_pos   pos,
    const std::vector<llama_seq_id> & seq_ids,
                               bool   logits);

//
// Token utils
//

// longest common prefix
size_t common_lcp(const llama_tokens & a, const llama_tokens & b);

// longet common subsequence
size_t common_lcs(const llama_tokens & a, const llama_tokens & b);

//
// Vocab utils
//

// tokenizes a string into a vector of tokens
// should work similar to Python's `tokenizer.encode`
std::vector<llama_token> common_tokenize(
  const struct llama_context * ctx,
           const std::string & text,
                        bool   add_special,
                        bool   parse_special = false);

std::vector<llama_token> common_tokenize(
    const struct llama_model * model,
           const std::string & text,
                        bool   add_special,
                        bool   parse_special = false);

// tokenizes a token into a piece, optionally renders special/control tokens
// should work similar to Python's `tokenizer.id_to_piece`
std::string common_token_to_piece(
        const struct llama_context * ctx,
                       llama_token   token,
                       bool          special = true);

// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
// optionally renders special/control tokens
std::string common_detokenize(
                         llama_context * ctx,
        const std::vector<llama_token> & tokens,
                                  bool   special = true);

//
// Chat template utils
//

// same with llama_chat_message, but uses std::string
struct common_chat_msg {
    std::string role;
    std::string content;
};

// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl);

// CPP wrapper for llama_chat_apply_template
// If the built-in template is not supported, we default to chatml
// If the custom "tmpl" is not supported, we throw an error
std::string common_chat_apply_template(const struct llama_model * model,
        const std::string & tmpl,
        const std::vector<common_chat_msg> & chat,
        bool add_ass);

// Format single message, while taking into account the position of that message in chat history
std::string common_chat_format_single(const struct llama_model * model,
        const std::string & tmpl,
        const std::vector<common_chat_msg> & past_msg,
        const common_chat_msg & new_msg,
        bool add_ass);

// Returns an example of formatted chat
std::string common_chat_format_example(const struct llama_model * model,
        const std::string & tmpl);

//
// KV cache utils
//

// Dump the KV cache view with the number of sequences per cell.
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);

// Dump the KV cache view showing individual sequences in each cell (long output).
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);

//
// Embedding utils
//

void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);

float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);

//
// Control vector utils
//

struct common_control_vector_data {
    int n_embd;

    // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
    std::vector<float> data;
};

struct common_control_vector_load_info {
    float strength;

    std::string fname;
};

// Load control vectors, scale each by strength, and add them together.
// On error, returns {-1, empty}
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);

//
// Split utils
//

static const char * const LLM_KV_SPLIT_NO            = "split.no";
static const char * const LLM_KV_SPLIT_COUNT         = "split.count";
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";