File size: 16,837 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from __future__ import annotations

from dataclasses import dataclass
import logging
import argparse
import os
import sys
import json
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
from transformers import AutoConfig

import torch

if TYPE_CHECKING:
    from torch import Tensor

if 'NO_LOCAL_GGUF' not in os.environ:
    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf

# reuse model definitions from convert_hf_to_gguf.py
from convert_hf_to_gguf import LazyTorchTensor, Model

logger = logging.getLogger("lora-to-gguf")


@dataclass
class PartialLoraTensor:
    A: Tensor | None = None
    B: Tensor | None = None


# magic to support tensor shape modifications and splitting
class LoraTorchTensor:
    _lora_A: Tensor  # (n_rank, row_size)
    _lora_B: Tensor  # (col_size, n_rank)
    _rank: int

    def __init__(self, A: Tensor, B: Tensor):
        assert len(A.shape) == len(B.shape)
        assert A.shape[-2] == B.shape[-1]
        if A.dtype != B.dtype:
            A = A.to(torch.float32)
            B = B.to(torch.float32)
        self._lora_A = A
        self._lora_B = B
        self._rank = B.shape[-1]

    def get_lora_A_B(self) -> tuple[Tensor, Tensor]:
        return (self._lora_A, self._lora_B)

    def __getitem__(
        self,
        indices: (
            SupportsIndex
            | slice
            | tuple[SupportsIndex | slice | Tensor, ...]  # TODO: add ellipsis in the type signature
        ),
    ) -> LoraTorchTensor:
        shape = self.shape
        if isinstance(indices, SupportsIndex):
            if len(shape) > 2:
                return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
            else:
                raise NotImplementedError  # can't return a vector
        elif isinstance(indices, slice):
            if len(shape) > 2:
                return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
            else:
                return LoraTorchTensor(self._lora_A, self._lora_B[indices])
        elif isinstance(indices, tuple):
            assert len(indices) > 0
            if indices[-1] is Ellipsis:
                return self[indices[:-1]]
            # expand ellipsis
            indices = tuple(
                u
                for v in (
                    (
                        (slice(None, None) for _ in range(len(indices) - 1))
                        if i is Ellipsis
                        else (i,)
                    )
                    for i in indices
                )
                for u in v
            )

            if len(indices) < len(shape):
                indices = (*indices, *(slice(None, None) for _ in range(len(indices), len(shape))))

            # TODO: make sure this is correct
            indices_A = (
                *(
                    (
                        j.__index__() % self._lora_A.shape[i]
                        if isinstance(j, SupportsIndex)
                        else slice(None, None)
                    )
                    for i, j in enumerate(indices[:-2])
                ),
                slice(None, None),
                indices[-1],
            )
            indices_B = indices[:-1]
            return LoraTorchTensor(self._lora_A[indices_A], self._lora_B[indices_B])
        else:
            raise NotImplementedError  # unknown indice type

    @property
    def dtype(self) -> torch.dtype:
        assert self._lora_A.dtype == self._lora_B.dtype
        return self._lora_A.dtype

    @property
    def shape(self) -> tuple[int, ...]:
        assert len(self._lora_A.shape) == len(self._lora_B.shape)
        return (*self._lora_B.shape[:-1], self._lora_A.shape[-1])

    def size(self, dim=None):
        assert dim is None
        return self.shape

    def reshape(self, *shape: int | tuple[int, ...]) -> LoraTorchTensor:
        if isinstance(shape[0], tuple):
            new_shape: tuple[int, ...] = shape[0]
        else:
            new_shape = cast(tuple[int, ...], shape)
        orig_shape = self.shape
        if len(new_shape) < 2:
            raise NotImplementedError  # can't become a vector

        # expand -1 in the shape
        if any(dim == -1 for dim in new_shape):
            n_elems = prod(orig_shape)
            n_new_elems = prod(dim if dim != -1 else 1 for dim in new_shape)
            assert n_elems % n_new_elems == 0
            new_shape = (*(dim if dim != -1 else n_elems // n_new_elems for dim in new_shape),)

        if new_shape[-1] != orig_shape[-1]:
            raise NotImplementedError  # can't reshape the row size trivially

        shape_A = (*(1 for _ in new_shape[:-2]), self._rank, orig_shape[-1])
        shape_B = (*new_shape[:-1], self._rank)
        return LoraTorchTensor(
            self._lora_A.reshape(shape_A),
            self._lora_B.reshape(shape_B),
        )

    def reshape_as(self, other: Tensor) -> LoraTorchTensor:
        return self.reshape(*other.shape)

    def view(self, *size: int) -> LoraTorchTensor:
        return self.reshape(*size)

    def permute(self, *dims: int) -> LoraTorchTensor:
        shape = self.shape
        dims = tuple(dim - len(shape) if dim >= 0 else dim for dim in dims)
        if dims[-1] == -1:
            # TODO: support higher dimensional A shapes bigger than 1
            assert all(dim == 1 for dim in self._lora_A.shape[:-2])
            return LoraTorchTensor(self._lora_A, self._lora_B.permute(*dims))
        if len(shape) == 2 and dims[-1] == -2 and dims[-2] == -1:
            return LoraTorchTensor(self._lora_B.permute(*dims), self._lora_A.permute(*dims))
        else:
            # TODO: compose the above two
            raise NotImplementedError

    def transpose(self, dim0: int, dim1: int) -> LoraTorchTensor:
        shape = self.shape
        dims = [i for i in range(len(shape))]
        dims[dim0], dims[dim1] = dims[dim1], dims[dim0]
        return self.permute(*dims)

    def swapaxes(self, axis0: int, axis1: int) -> LoraTorchTensor:
        return self.transpose(axis0, axis1)

    def to(self, *args, **kwargs):
        return LoraTorchTensor(self._lora_A.to(*args, **kwargs), self._lora_B.to(*args, **kwargs))

    @classmethod
    def __torch_function__(cls, func: Callable, types, args=(), kwargs=None):
        del types  # unused

        if kwargs is None:
            kwargs = {}

        if func is torch.permute:
            return type(args[0]).permute(*args, **kwargs)
        elif func is torch.reshape:
            return type(args[0]).reshape(*args, **kwargs)
        elif func is torch.stack:
            assert isinstance(args[0], Sequence)
            dim = kwargs.get("dim", 0)
            assert dim == 0
            return LoraTorchTensor(
                torch.stack([a._lora_A for a in args[0]], dim),
                torch.stack([b._lora_B for b in args[0]], dim),
            )
        elif func is torch.cat:
            assert isinstance(args[0], Sequence)
            dim = kwargs.get("dim", 0)
            assert dim == 0
            if len(args[0][0].shape) > 2:
                return LoraTorchTensor(
                    torch.cat([a._lora_A for a in args[0]], dim),
                    torch.cat([b._lora_B for b in args[0]], dim),
                )
            elif all(torch.equal(args[0][0]._lora_A, t._lora_A) for t in args[0][1:]):
                return LoraTorchTensor(
                    args[0][0]._lora_A,
                    torch.cat([b._lora_B for b in args[0]], dim),
                )
            else:
                raise NotImplementedError
        else:
            raise NotImplementedError


def get_base_tensor_name(lora_tensor_name: str) -> str:
    base_name = lora_tensor_name.replace("base_model.model.", "")
    base_name = base_name.replace(".lora_A.weight", ".weight")
    base_name = base_name.replace(".lora_B.weight", ".weight")
    return base_name


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser(
        description="Convert a Hugging Face PEFT LoRA adapter to a GGUF file")
    parser.add_argument(
        "--outfile", type=Path,
        help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
    )
    parser.add_argument(
        "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
        help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
    )
    parser.add_argument(
        "--bigendian", action="store_true",
        help="model is executed on big endian machine",
    )
    parser.add_argument(
        "--no-lazy", action="store_true",
        help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
    )
    parser.add_argument(
        "--verbose", action="store_true",
        help="increase output verbosity",
    )
    parser.add_argument(
        "--dry-run", action="store_true",
        help="only print out what will be done, without writing any new files",
    )
    parser.add_argument(
        "--base", type=Path,
        help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
    )
    parser.add_argument(
        "lora_path", type=Path,
        help="directory containing Hugging Face PEFT LoRA config (adapter_model.json) and weights (adapter_model.safetensors or adapter_model.bin)",
    )

    return parser.parse_args()


def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
    # normally, adapter does not come with base model config, we need to load it from AutoConfig
    config = AutoConfig.from_pretrained(hf_model_id)
    return config.to_dict()


if __name__ == '__main__':
    args = parse_args()
    logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)

    ftype_map: dict[str, gguf.LlamaFileType] = {
        "f32": gguf.LlamaFileType.ALL_F32,
        "f16": gguf.LlamaFileType.MOSTLY_F16,
        "bf16": gguf.LlamaFileType.MOSTLY_BF16,
        "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
        "auto": gguf.LlamaFileType.GUESSED,
    }

    ftype = ftype_map[args.outtype]

    dir_base_model: Path | None = args.base
    dir_lora: Path = args.lora_path
    lora_config = dir_lora / "adapter_config.json"
    input_model = dir_lora / "adapter_model.safetensors"

    if args.outfile is not None:
        fname_out = args.outfile
    else:
        # output in the same directory as the model by default
        fname_out = dir_lora

    if os.path.exists(input_model):
        # lazy import load_file only if lora is in safetensors format.
        from safetensors.torch import load_file

        lora_model = load_file(input_model, device="cpu")
    else:
        input_model = os.path.join(dir_lora, "adapter_model.bin")
        lora_model = torch.load(input_model, map_location="cpu", weights_only=True)

    # load LoRA config
    with open(lora_config, "r") as f:
        lparams: dict[str, Any] = json.load(f)

    # load base model
    if dir_base_model is None:
        if "base_model_name_or_path" in lparams:
            model_id = lparams["base_model_name_or_path"]
            logger.info(f"Loading base model from Hugging Face: {model_id}")
            try:
                hparams = load_hparams_from_hf(model_id)
            except OSError as e:
                logger.error(f"Failed to load base model config: {e}")
                logger.error("Please try downloading the base model and add its path to --base")
                sys.exit(1)
        else:
            logger.error("'base_model_name_or_path' is not found in adapter_config.json")
            logger.error("Base model config is required. Please download the base model and add its path to --base")
            sys.exit(1)
    else:
        logger.info(f"Loading base model: {dir_base_model.name}")
        hparams = Model.load_hparams(dir_base_model)

    with torch.inference_mode():
        try:
            model_class = Model.from_model_architecture(hparams["architectures"][0])
        except NotImplementedError:
            logger.error(f"Model {hparams['architectures'][0]} is not supported")
            sys.exit(1)

        class LoraModel(model_class):
            model_arch = model_class.model_arch

            lora_alpha: float

            def __init__(self, *args, dir_lora_model: Path, lora_alpha: float, **kwargs):

                super().__init__(*args, **kwargs)

                self.dir_model_card = dir_lora_model
                self.lora_alpha = float(lora_alpha)

            def set_vocab(self):
                pass

            def set_type(self):
                self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
                self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")

            def set_gguf_parameters(self):
                self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)

            def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
                # Never add extra tensors (e.g. rope_freqs) for LoRA adapters
                return ()

            def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
                tensor_map: dict[str, PartialLoraTensor] = {}

                for name, tensor in lora_model.items():
                    if self.lazy:
                        tensor = LazyTorchTensor.from_eager(tensor)
                    base_name = get_base_tensor_name(name)
                    is_lora_a = ".lora_A.weight" in name
                    is_lora_b = ".lora_B.weight" in name
                    if not is_lora_a and not is_lora_b:
                        if ".base_layer.weight" in name:
                            continue
                        logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
                        if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
                            logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
                            logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
                        sys.exit(1)

                    if base_name in tensor_map:
                        if is_lora_a:
                            tensor_map[base_name].A = tensor
                        else:
                            tensor_map[base_name].B = tensor
                    else:
                        if is_lora_a:
                            tensor_map[base_name] = PartialLoraTensor(A=tensor)
                        else:
                            tensor_map[base_name] = PartialLoraTensor(B=tensor)

                for name, tensor in tensor_map.items():
                    assert tensor.A is not None
                    assert tensor.B is not None
                    yield (name, cast(torch.Tensor, LoraTorchTensor(tensor.A, tensor.B)))

            def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
                dest = list(super().modify_tensors(data_torch, name, bid))
                # some archs may have the same tensor for lm_head and output (tie word embeddings)
                # in this case, adapters targeting lm_head will fail when using llama-export-lora
                # therefore, we ignore them for now
                # see: https://github.com/ggerganov/llama.cpp/issues/9065
                if name == "lm_head.weight" and len(dest) == 0:
                    raise ValueError("lm_head is present in adapter, but is ignored in base model")
                for dest_name, dest_data in dest:
                    assert isinstance(dest_data, LoraTorchTensor)
                    lora_a, lora_b = dest_data.get_lora_A_B()

                    yield (dest_name + ".lora_a", lora_a)
                    yield (dest_name + ".lora_b", lora_b)

        alpha: float = lparams["lora_alpha"]

        model_instance = LoraModel(
            dir_base_model,
            ftype,
            fname_out,
            is_big_endian=args.bigendian,
            use_temp_file=False,
            eager=args.no_lazy,
            dry_run=args.dry_run,
            dir_lora_model=dir_lora,
            lora_alpha=alpha,
            hparams=hparams,
        )

        logger.info("Exporting model...")
        model_instance.write()
        logger.info(f"Model successfully exported to {model_instance.fname_out}")