|
import gradio as gr |
|
from llama_cpp import Llama |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
adapter_repo = "Mat17892/llama_lora_gguf" |
|
|
|
|
|
lora_adapter_path = hf_hub_download(repo_id=adapter_repo, filename="llama_lora_adapter.gguf") |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
base_model_repo = "unsloth/Llama-3.2-3B-Instruct-GGUF" |
|
base_model_path = hf_hub_download(repo_id=base_model_repo, filename="Llama-3.2-3B-Instruct-Q8_0.gguf") |
|
|
|
|
|
|
|
print("Loading base model...") |
|
llm = Llama(model_path=base_model_path, n_ctx=2048, n_threads=8) |
|
|
|
|
|
print("Applying LoRA adapter...") |
|
llm.load_adapter(adapter_path=lora_adapter_path) |
|
|
|
print("Model ready with LoRA adapter!") |
|
|
|
|
|
def chat_with_model(user_input, chat_history): |
|
""" |
|
Process user input and generate a response from the model. |
|
:param user_input: User's input string |
|
:param chat_history: List of [user_message, ai_response] pairs |
|
:return: Updated chat history |
|
""" |
|
|
|
prompt = "" |
|
for user, ai in chat_history: |
|
prompt += f"User: {user}\nAI: {ai}\n" |
|
prompt += f"User: {user_input}\nAI:" |
|
|
|
|
|
raw_response = llm(prompt)["choices"][0]["text"].strip() |
|
|
|
|
|
response = raw_response.split("User:")[0].strip() |
|
|
|
|
|
chat_history.append((user_input, response)) |
|
return chat_history, chat_history |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# 🦙 LLaMA GGUF Chatbot") |
|
chatbot = gr.Chatbot(label="Chat with the GGUF Model") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
user_input = gr.Textbox(label="Your Message", placeholder="Type a message...") |
|
with gr.Column(scale=1): |
|
submit_btn = gr.Button("Send") |
|
|
|
chat_history = gr.State([]) |
|
|
|
|
|
submit_btn.click( |
|
chat_with_model, |
|
inputs=[user_input, chat_history], |
|
outputs=[chatbot, chat_history], |
|
show_progress=True, |
|
) |
|
|
|
|
|
demo.launch() |
|
|