iris / app.py
desert
init inference
7b6b9cb
raw
history blame
2.3 kB
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
# Model identifier from Hugging Face
adapter_repo = "Mat17892/llama_lora_gguf" # Hugging Face model ID
# Download the GGUF file from Hugging Face
lora_adapter_path = hf_hub_download(repo_id=adapter_repo, filename="llama_lora_adapter.gguf")
from huggingface_hub import hf_hub_download
# Download the base model GGUF file
base_model_repo = "unsloth/Llama-3.2-3B-Instruct-GGUF"
base_model_path = hf_hub_download(repo_id=base_model_repo, filename="Llama-3.2-3B-Instruct-Q8_0.gguf")
# Load the base model
print("Loading base model...")
llm = Llama(model_path=base_model_path, n_ctx=2048, n_threads=8)
# Apply the LoRA adapter
print("Applying LoRA adapter...")
llm.load_adapter(adapter_path=lora_adapter_path)
print("Model ready with LoRA adapter!")
# Chat function
def chat_with_model(user_input, chat_history):
"""
Process user input and generate a response from the model.
:param user_input: User's input string
:param chat_history: List of [user_message, ai_response] pairs
:return: Updated chat history
"""
# Construct the prompt from chat history
prompt = ""
for user, ai in chat_history:
prompt += f"User: {user}\nAI: {ai}\n"
prompt += f"User: {user_input}\nAI:" # Add the latest user input
# Generate response from the model
raw_response = llm(prompt)["choices"][0]["text"].strip()
# Clean the response (remove extra tags, if any)
response = raw_response.split("User:")[0].strip()
# Update chat history with the new turn
chat_history.append((user_input, response))
return chat_history, chat_history
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# 🦙 LLaMA GGUF Chatbot")
chatbot = gr.Chatbot(label="Chat with the GGUF Model")
with gr.Row():
with gr.Column(scale=4):
user_input = gr.Textbox(label="Your Message", placeholder="Type a message...")
with gr.Column(scale=1):
submit_btn = gr.Button("Send")
chat_history = gr.State([])
# Link components
submit_btn.click(
chat_with_model,
inputs=[user_input, chat_history],
outputs=[chatbot, chat_history],
show_progress=True,
)
# Launch the app
demo.launch()