|
import Foundation |
|
import llama |
|
|
|
let arguments = CommandLine.arguments |
|
|
|
|
|
guard arguments.count > 1 else { |
|
print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]") |
|
exit(1) |
|
} |
|
|
|
let modelPath: String = arguments[1] |
|
let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is" |
|
let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1 |
|
|
|
|
|
let n_len: Int = 32 |
|
|
|
|
|
llama_backend_init() |
|
defer { |
|
llama_backend_free() |
|
} |
|
|
|
let model_params = llama_model_default_params() |
|
guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else { |
|
print("Failed to load model") |
|
exit(1) |
|
} |
|
defer { |
|
llama_free_model(model) |
|
} |
|
|
|
var tokens = tokenize(text: prompt, add_bos: true) |
|
|
|
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel) |
|
|
|
var context_params = llama_context_default_params() |
|
context_params.n_ctx = n_kv_req |
|
context_params.n_batch = UInt32(max(n_len, n_parallel)) |
|
context_params.n_threads = 8 |
|
context_params.n_threads_batch = 8 |
|
|
|
let context = llama_new_context_with_model(model, context_params) |
|
guard context != nil else { |
|
print("Failed to initialize context") |
|
exit(1) |
|
} |
|
defer { |
|
llama_free(context) |
|
} |
|
|
|
var sparams = llama_sampler_chain_default_params() |
|
|
|
let smpl = llama_sampler_chain_init(sparams) |
|
guard smpl != nil else { |
|
print("Failed to initialize sampling") |
|
exit(1) |
|
} |
|
defer { |
|
llama_sampler_free(smpl) |
|
} |
|
|
|
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(40)); |
|
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1)); |
|
llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.4)); |
|
llama_sampler_chain_add(smpl, llama_sampler_init_dist (1234)); |
|
|
|
let n_ctx = llama_n_ctx(context) |
|
|
|
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n") |
|
|
|
if n_kv_req > n_ctx { |
|
print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req) |
|
exit(1) |
|
} |
|
|
|
var buffer: [CChar] = [] |
|
for id: llama_token in tokens { |
|
print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "") |
|
} |
|
|
|
print("\n") |
|
|
|
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1) |
|
defer { |
|
llama_batch_free(batch) |
|
} |
|
|
|
|
|
batch.n_tokens = Int32(tokens.count) |
|
|
|
for (i, token) in tokens.enumerated() { |
|
batch.token[i] = token |
|
batch.pos[i] = Int32(i) |
|
batch.n_seq_id[i] = 1 |
|
|
|
|
|
if let seq_id = batch.seq_id[i] { |
|
seq_id[0] = 0 |
|
} |
|
batch.logits[i] = 0 |
|
} |
|
|
|
|
|
batch.logits[Int(batch.n_tokens) - 1] = 1 |
|
|
|
if llama_decode(context, batch) != 0 { |
|
print("llama_decode() failed") |
|
exit(1) |
|
} |
|
|
|
for i in 1 ..< n_parallel { |
|
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens) |
|
} |
|
|
|
if n_parallel > 1 { |
|
print("generating \(n_parallel) sequences ...\n") |
|
} |
|
|
|
var streams: [String] = .init(repeating: "", count: n_parallel) |
|
var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel) |
|
var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel) |
|
|
|
var n_cur = batch.n_tokens |
|
var n_decode = 0 |
|
|
|
let t_main_start = ggml_time_us() |
|
|
|
while n_cur <= n_len { |
|
|
|
batch.n_tokens = 0 |
|
|
|
|
|
for i in 0 ..< n_parallel { |
|
if i_batch[i] < 0 { |
|
|
|
continue |
|
} |
|
|
|
let new_token_id = llama_sampler_sample(smpl, context, i_batch[i]) |
|
|
|
|
|
if llama_token_is_eog(model, new_token_id) || n_cur == n_len { |
|
i_batch[i] = -1 |
|
|
|
if n_parallel > 1 { |
|
print("stream \(i) finished at n_cur = \(n_cur)") |
|
} |
|
|
|
continue |
|
} |
|
|
|
let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? "" |
|
|
|
|
|
if n_parallel == 1 { |
|
print(nextStringPiece, terminator: "") |
|
} |
|
streams[i] += nextStringPiece |
|
|
|
|
|
batch.token[Int(batch.n_tokens)] = new_token_id |
|
batch.pos[Int(batch.n_tokens)] = n_cur |
|
batch.n_seq_id[Int(batch.n_tokens)] = 1 |
|
if let seq_id = batch.seq_id[Int(batch.n_tokens)] { |
|
seq_id[0] = Int32(i) |
|
} |
|
batch.logits[Int(batch.n_tokens)] = 1 |
|
|
|
i_batch[i] = batch.n_tokens |
|
|
|
batch.n_tokens += 1 |
|
|
|
n_decode += 1 |
|
} |
|
|
|
|
|
if batch.n_tokens == 0 { |
|
break |
|
} |
|
|
|
n_cur += 1 |
|
|
|
|
|
if llama_decode(context, batch) != 0 { |
|
print("llama_decode() failed") |
|
exit(1) |
|
} |
|
} |
|
|
|
if n_parallel > 1 { |
|
print("\n") |
|
for (i, stream) in streams.enumerated() { |
|
print("sequence \(i):\n\n\(prompt)\(stream)\n") |
|
} |
|
} |
|
|
|
let t_main_end = ggml_time_us() |
|
|
|
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n\n") |
|
|
|
llama_perf_sampler_print(smpl) |
|
llama_perf_context_print(context) |
|
|
|
private func tokenize(text: String, add_bos: Bool) -> [llama_token] { |
|
let utf8Count = text.utf8.count |
|
let n_tokens = utf8Count + (add_bos ? 1 : 0) |
|
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens) |
|
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false) |
|
var swiftTokens: [llama_token] = [] |
|
for i in 0 ..< tokenCount { |
|
swiftTokens.append(tokens[Int(i)]) |
|
} |
|
tokens.deallocate() |
|
return swiftTokens |
|
} |
|
|
|
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? { |
|
var result = [CChar](repeating: 0, count: 8) |
|
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), 0, false) |
|
if nTokens < 0 { |
|
let actualTokensCount = -Int(nTokens) |
|
result = .init(repeating: 0, count: actualTokensCount) |
|
let check = llama_token_to_piece( |
|
model, |
|
token, |
|
&result, |
|
Int32(result.count), |
|
0, |
|
false |
|
) |
|
assert(check == actualTokensCount) |
|
} else { |
|
result.removeLast(result.count - Int(nTokens)) |
|
} |
|
if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) { |
|
return utfString |
|
} else { |
|
buffer.append(contentsOf: result) |
|
let data = Data(buffer.map { UInt8(bitPattern: $0) }) |
|
if buffer.count >= 4 { |
|
buffer = [] |
|
} |
|
guard let bufferString = String(data: data, encoding: .utf8) else { |
|
return nil |
|
} |
|
buffer = [] |
|
return bufferString |
|
} |
|
} |
|
|