|
#include "arg.h" |
|
#include "common.h" |
|
#include "log.h" |
|
#include "llama.h" |
|
|
|
#include <ctime> |
|
|
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4244 4267) |
|
#endif |
|
|
|
static std::vector<std::string> split_lines(const std::string & s, const std::string & separator = "\n") { |
|
std::vector<std::string> lines; |
|
size_t start = 0; |
|
size_t end = s.find(separator); |
|
|
|
while (end != std::string::npos) { |
|
lines.push_back(s.substr(start, end - start)); |
|
start = end + separator.length(); |
|
end = s.find(separator, start); |
|
} |
|
|
|
lines.push_back(s.substr(start)); |
|
|
|
return lines; |
|
} |
|
|
|
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) { |
|
size_t n_tokens = tokens.size(); |
|
for (size_t i = 0; i < n_tokens; i++) { |
|
common_batch_add(batch, tokens[i], i, { seq_id }, true); |
|
} |
|
} |
|
|
|
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) { |
|
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); |
|
const struct llama_model * model = llama_get_model(ctx); |
|
|
|
|
|
llama_kv_cache_clear(ctx); |
|
|
|
|
|
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); |
|
if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) { |
|
|
|
if (llama_encode(ctx, batch) < 0) { |
|
LOG_ERR("%s : failed to encode\n", __func__); |
|
} |
|
} else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) { |
|
|
|
if (llama_decode(ctx, batch) < 0) { |
|
LOG_ERR("%s : failed to decode\n", __func__); |
|
} |
|
} |
|
|
|
for (int i = 0; i < batch.n_tokens; i++) { |
|
if (!batch.logits[i]) { |
|
continue; |
|
} |
|
|
|
const float * embd = nullptr; |
|
int embd_pos = 0; |
|
|
|
if (pooling_type == LLAMA_POOLING_TYPE_NONE) { |
|
|
|
embd = llama_get_embeddings_ith(ctx, i); |
|
embd_pos = i; |
|
GGML_ASSERT(embd != NULL && "failed to get token embeddings"); |
|
} else { |
|
|
|
embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); |
|
embd_pos = batch.seq_id[i][0]; |
|
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings"); |
|
} |
|
|
|
float * out = output + embd_pos * n_embd; |
|
common_embd_normalize(embd, out, n_embd, embd_norm); |
|
} |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
common_params params; |
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) { |
|
return 1; |
|
} |
|
|
|
common_init(); |
|
|
|
params.embedding = true; |
|
|
|
params.n_ubatch = params.n_batch; |
|
|
|
llama_backend_init(); |
|
llama_numa_init(params.numa); |
|
|
|
|
|
common_init_result llama_init = common_init_from_params(params); |
|
|
|
llama_model * model = llama_init.model; |
|
llama_context * ctx = llama_init.context; |
|
if (model == NULL) { |
|
LOG_ERR("%s: unable to load model\n", __func__); |
|
return 1; |
|
} |
|
|
|
const int n_ctx_train = llama_n_ctx_train(model); |
|
const int n_ctx = llama_n_ctx(ctx); |
|
|
|
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); |
|
|
|
if (llama_model_has_encoder(model) && llama_model_has_decoder(model)) { |
|
LOG_ERR("%s: computing embeddings in encoder-decoder models is not supported\n", __func__); |
|
return 1; |
|
} |
|
|
|
if (n_ctx > n_ctx_train) { |
|
LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n", |
|
__func__, n_ctx_train, n_ctx); |
|
} |
|
|
|
|
|
{ |
|
LOG_INF("\n"); |
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str()); |
|
} |
|
|
|
|
|
std::vector<std::string> prompts = split_lines(params.prompt, params.embd_sep); |
|
|
|
|
|
const uint64_t n_batch = params.n_batch; |
|
GGML_ASSERT(params.n_batch >= params.n_ctx); |
|
|
|
|
|
std::vector<std::vector<int32_t>> inputs; |
|
for (const auto & prompt : prompts) { |
|
auto inp = common_tokenize(ctx, prompt, true, true); |
|
if (inp.size() > n_batch) { |
|
LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n", |
|
__func__, (long long int) inp.size(), (long long int) n_batch); |
|
return 1; |
|
} |
|
inputs.push_back(inp); |
|
} |
|
|
|
|
|
|
|
for (auto & inp : inputs) { |
|
if (inp.empty() || inp.back() != llama_token_sep(model)) { |
|
LOG_WRN("%s: last token in the prompt is not SEP\n", __func__); |
|
LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__); |
|
} |
|
} |
|
|
|
|
|
if (params.verbose_prompt) { |
|
for (int i = 0; i < (int) inputs.size(); i++) { |
|
LOG_INF("%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str()); |
|
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size()); |
|
for (int j = 0; j < (int) inputs[i].size(); j++) { |
|
LOG("%6d -> '%s'\n", inputs[i][j], common_token_to_piece(ctx, inputs[i][j]).c_str()); |
|
} |
|
LOG("\n\n"); |
|
} |
|
} |
|
|
|
|
|
const int n_prompts = prompts.size(); |
|
struct llama_batch batch = llama_batch_init(n_batch, 0, 1); |
|
|
|
|
|
int n_embd_count = 0; |
|
if (pooling_type == LLAMA_POOLING_TYPE_NONE) { |
|
for (int k = 0; k < n_prompts; k++) { |
|
n_embd_count += inputs[k].size(); |
|
} |
|
} else { |
|
n_embd_count = n_prompts; |
|
} |
|
|
|
|
|
const int n_embd = llama_n_embd(model); |
|
std::vector<float> embeddings(n_embd_count * n_embd, 0); |
|
float * emb = embeddings.data(); |
|
|
|
|
|
int e = 0; |
|
int s = 0; |
|
for (int k = 0; k < n_prompts; k++) { |
|
|
|
auto & inp = inputs[k]; |
|
|
|
const uint64_t n_toks = inp.size(); |
|
|
|
|
|
if (batch.n_tokens + n_toks > n_batch) { |
|
float * out = emb + e * n_embd; |
|
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize); |
|
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s; |
|
s = 0; |
|
common_batch_clear(batch); |
|
} |
|
|
|
|
|
batch_add_seq(batch, inp, s); |
|
s += 1; |
|
} |
|
|
|
|
|
float * out = emb + e * n_embd; |
|
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize); |
|
|
|
if (params.embd_out.empty()) { |
|
LOG("\n"); |
|
|
|
if (pooling_type == LLAMA_POOLING_TYPE_NONE) { |
|
for (int j = 0; j < n_embd_count; j++) { |
|
LOG("embedding %d: ", j); |
|
for (int i = 0; i < std::min(3, n_embd); i++) { |
|
if (params.embd_normalize == 0) { |
|
LOG("%6.0f ", emb[j * n_embd + i]); |
|
} else { |
|
LOG("%9.6f ", emb[j * n_embd + i]); |
|
} |
|
} |
|
LOG(" ... "); |
|
for (int i = n_embd - 3; i < n_embd; i++) { |
|
if (params.embd_normalize == 0) { |
|
LOG("%6.0f ", emb[j * n_embd + i]); |
|
} else { |
|
LOG("%9.6f ", emb[j * n_embd + i]); |
|
} |
|
} |
|
LOG("\n"); |
|
} |
|
} else if (pooling_type == LLAMA_POOLING_TYPE_RANK) { |
|
for (int j = 0; j < n_embd_count; j++) { |
|
|
|
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]); |
|
} |
|
} else { |
|
|
|
for (int j = 0; j < n_prompts; j++) { |
|
LOG("embedding %d: ", j); |
|
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) { |
|
if (params.embd_normalize == 0) { |
|
LOG("%6.0f ", emb[j * n_embd + i]); |
|
} else { |
|
LOG("%9.6f ", emb[j * n_embd + i]); |
|
} |
|
} |
|
LOG("\n"); |
|
} |
|
|
|
|
|
if (n_prompts > 1) { |
|
LOG("\n"); |
|
LOG("cosine similarity matrix:\n\n"); |
|
for (int i = 0; i < n_prompts; i++) { |
|
LOG("%6.6s ", prompts[i].c_str()); |
|
} |
|
LOG("\n"); |
|
for (int i = 0; i < n_prompts; i++) { |
|
for (int j = 0; j < n_prompts; j++) { |
|
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd); |
|
LOG("%6.2f ", sim); |
|
} |
|
LOG("%1.10s", prompts[i].c_str()); |
|
LOG("\n"); |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array") { |
|
const bool notArray = params.embd_out != "array"; |
|
|
|
LOG(notArray ? "{\n \"object\": \"list\",\n \"data\": [\n" : "["); |
|
for (int j = 0;;) { |
|
if (notArray) LOG(" {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j); |
|
LOG("["); |
|
for (int i = 0;;) { |
|
LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]); |
|
i++; |
|
if (i < n_embd) LOG(","); else break; |
|
} |
|
LOG(notArray ? "]\n }" : "]"); |
|
j++; |
|
if (j < n_embd_count) LOG(notArray ? ",\n" : ","); else break; |
|
} |
|
LOG(notArray ? "\n ]" : "]\n"); |
|
|
|
if (params.embd_out == "json+" && n_prompts > 1) { |
|
LOG(",\n \"cosineSimilarity\": [\n"); |
|
for (int i = 0;;) { |
|
LOG(" ["); |
|
for (int j = 0;;) { |
|
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd); |
|
LOG("%6.2f", sim); |
|
j++; |
|
if (j < n_embd_count) LOG(", "); else break; |
|
} |
|
LOG(" ]"); |
|
i++; |
|
if (i < n_embd_count) LOG(",\n"); else break; |
|
} |
|
LOG("\n ]"); |
|
} |
|
|
|
if (notArray) LOG("\n}\n"); |
|
} |
|
|
|
LOG("\n"); |
|
llama_perf_context_print(ctx); |
|
|
|
|
|
llama_batch_free(batch); |
|
llama_free(ctx); |
|
llama_free_model(model); |
|
llama_backend_free(); |
|
|
|
return 0; |
|
} |
|
|