|
#include "llama.h" |
|
#include "common.h" |
|
|
|
#include <algorithm> |
|
#include <cmath> |
|
#include <cstdlib> |
|
#include <fstream> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include <stdio.h> |
|
#include <string.h> |
|
#include <climits> |
|
#include <stdexcept> |
|
|
|
#if defined(_WIN32) |
|
#include <windows.h> |
|
#ifndef PATH_MAX |
|
#define PATH_MAX MAX_PATH |
|
#endif |
|
#include <io.h> |
|
#endif |
|
|
|
enum split_operation : uint8_t { |
|
OP_NONE, |
|
OP_SPLIT, |
|
OP_MERGE, |
|
}; |
|
|
|
enum split_mode : uint8_t { |
|
MODE_NONE, |
|
MODE_TENSOR, |
|
MODE_SIZE, |
|
}; |
|
|
|
struct split_params { |
|
split_operation operation = OP_NONE; |
|
split_mode mode = MODE_NONE; |
|
size_t n_bytes_split = 0; |
|
int n_split_tensors = 128; |
|
std::string input; |
|
std::string output; |
|
bool no_tensor_first_split = false; |
|
bool dry_run = false; |
|
}; |
|
|
|
static void split_print_usage(const char * executable) { |
|
const split_params default_params; |
|
printf("\n"); |
|
printf("usage: %s [options] GGUF_IN GGUF_OUT\n", executable); |
|
printf("\n"); |
|
printf("Apply a GGUF operation on IN to OUT."); |
|
printf("\n"); |
|
printf("options:\n"); |
|
printf(" -h, --help show this help message and exit\n"); |
|
printf(" --version show version and build info\n"); |
|
printf(" --split split GGUF to multiple GGUF (enabled by default)\n"); |
|
printf(" --merge merge multiple GGUF to a single GGUF\n"); |
|
printf(" --split-max-tensors max tensors in each split (default: %d)\n", default_params.n_split_tensors); |
|
printf(" --split-max-size N(M|G) max size per split\n"); |
|
printf(" --no-tensor-first-split do not add tensors to the first split (disabled by default)\n"); |
|
printf(" --dry-run only print out a split plan and exit, without writing any new files\n"); |
|
printf("\n"); |
|
} |
|
|
|
|
|
static size_t split_str_to_n_bytes(std::string str) { |
|
size_t n_bytes = 0; |
|
int n; |
|
if (str.back() == 'M') { |
|
sscanf(str.c_str(), "%d", &n); |
|
n_bytes = (size_t)n * 1000 * 1000; |
|
} else if (str.back() == 'G') { |
|
sscanf(str.c_str(), "%d", &n); |
|
n_bytes = (size_t)n * 1000 * 1000 * 1000; |
|
} else { |
|
throw std::invalid_argument("error: supported units are M (megabytes) or G (gigabytes), but got: " + std::string(1, str.back())); |
|
} |
|
if (n <= 0) { |
|
throw std::invalid_argument("error: size must be a positive value"); |
|
} |
|
return n_bytes; |
|
} |
|
|
|
static void split_params_parse_ex(int argc, const char ** argv, split_params & params) { |
|
std::string arg; |
|
const std::string arg_prefix = "--"; |
|
bool invalid_param = false; |
|
|
|
int arg_idx = 1; |
|
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) { |
|
arg = argv[arg_idx]; |
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { |
|
std::replace(arg.begin(), arg.end(), '_', '-'); |
|
} |
|
|
|
bool arg_found = false; |
|
if (arg == "-h" || arg == "--help") { |
|
split_print_usage(argv[0]); |
|
exit(0); |
|
} else if (arg == "--version") { |
|
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); |
|
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); |
|
exit(0); |
|
} else if (arg == "--dry-run") { |
|
arg_found = true; |
|
params.dry_run = true; |
|
} else if (arg == "--no-tensor-first-split") { |
|
arg_found = true; |
|
params.no_tensor_first_split = true; |
|
} else if (arg == "--merge") { |
|
arg_found = true; |
|
if (params.operation != OP_NONE && params.operation != OP_MERGE) { |
|
throw std::invalid_argument("error: either --split or --merge can be specified, but not both"); |
|
} |
|
params.operation = OP_MERGE; |
|
} else if (arg == "--split") { |
|
arg_found = true; |
|
if (params.operation != OP_NONE && params.operation != OP_SPLIT) { |
|
throw std::invalid_argument("error: either --split or --merge can be specified, but not both"); |
|
} |
|
params.operation = OP_SPLIT; |
|
} else if (arg == "--split-max-tensors") { |
|
if (++arg_idx >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
arg_found = true; |
|
if (params.mode != MODE_NONE && params.mode != MODE_TENSOR) { |
|
throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both"); |
|
} |
|
params.mode = MODE_TENSOR; |
|
params.n_split_tensors = atoi(argv[arg_idx]); |
|
} else if (arg == "--split-max-size") { |
|
if (++arg_idx >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
arg_found = true; |
|
if (params.mode != MODE_NONE && params.mode != MODE_SIZE) { |
|
throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both"); |
|
} |
|
params.mode = MODE_SIZE; |
|
params.n_bytes_split = split_str_to_n_bytes(argv[arg_idx]); |
|
} |
|
|
|
if (!arg_found) { |
|
throw std::invalid_argument("error: unknown argument: " + arg); |
|
} |
|
} |
|
|
|
|
|
if (params.operation == OP_NONE) { |
|
params.operation = OP_SPLIT; |
|
} |
|
|
|
if (params.mode == MODE_NONE) { |
|
params.mode = MODE_TENSOR; |
|
} |
|
|
|
if (invalid_param) { |
|
throw std::invalid_argument("error: invalid parameter for argument: " + arg); |
|
} |
|
|
|
if (argc - arg_idx != 2) { |
|
throw std::invalid_argument("error: bad arguments"); |
|
} |
|
|
|
params.input = argv[arg_idx++]; |
|
params.output = argv[arg_idx++]; |
|
} |
|
|
|
static bool split_params_parse(int argc, const char ** argv, split_params & params) { |
|
bool result = true; |
|
try { |
|
split_params_parse_ex(argc, argv, params); |
|
} |
|
catch (const std::invalid_argument & ex) { |
|
fprintf(stderr, "%s\n", ex.what()); |
|
split_print_usage(argv[0]); |
|
exit(EXIT_FAILURE); |
|
} |
|
return result; |
|
} |
|
|
|
static void zeros(std::ofstream & file, size_t n) { |
|
char zero = 0; |
|
for (size_t i = 0; i < n; ++i) { |
|
file.write(&zero, 1); |
|
} |
|
} |
|
|
|
struct split_strategy { |
|
const split_params params; |
|
std::ifstream & f_input; |
|
struct gguf_context * ctx_gguf; |
|
struct ggml_context * ctx_meta = NULL; |
|
const int n_tensors; |
|
|
|
|
|
std::vector<struct gguf_context *> ctx_outs; |
|
|
|
|
|
std::vector<uint8_t> read_buf; |
|
|
|
split_strategy(const split_params & params, |
|
std::ifstream & f_input, |
|
struct gguf_context * ctx_gguf, |
|
struct ggml_context * ctx_meta) : |
|
params(params), |
|
f_input(f_input), |
|
ctx_gguf(ctx_gguf), |
|
ctx_meta(ctx_meta), |
|
n_tensors(gguf_get_n_tensors(ctx_gguf)) { |
|
|
|
|
|
int i_split = -1; |
|
struct gguf_context * ctx_out = NULL; |
|
auto new_ctx_out = [&](bool allow_no_tensors) { |
|
i_split++; |
|
if (ctx_out != NULL) { |
|
if (gguf_get_n_tensors(ctx_out) == 0 && !allow_no_tensors) { |
|
fprintf(stderr, "error: one of splits have 0 tensors. Maybe size or tensors limit is too small\n"); |
|
exit(EXIT_FAILURE); |
|
} |
|
ctx_outs.push_back(ctx_out); |
|
} |
|
ctx_out = gguf_init_empty(); |
|
|
|
if (i_split == 0) { |
|
gguf_set_kv(ctx_out, ctx_gguf); |
|
} |
|
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_NO, i_split); |
|
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_COUNT, 0); |
|
gguf_set_val_i32(ctx_out, LLM_KV_SPLIT_TENSORS_COUNT, n_tensors); |
|
}; |
|
|
|
|
|
new_ctx_out(false); |
|
|
|
|
|
if (params.no_tensor_first_split) { |
|
new_ctx_out(true); |
|
} |
|
|
|
|
|
size_t curr_tensors_size = 0; |
|
for (int i = 0; i < n_tensors; ++i) { |
|
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i)); |
|
|
|
size_t n_bytes = GGML_PAD(ggml_nbytes(t), GGUF_DEFAULT_ALIGNMENT); |
|
size_t next_tensors_size = curr_tensors_size + n_bytes; |
|
if (should_split(i, next_tensors_size)) { |
|
new_ctx_out(false); |
|
curr_tensors_size = n_bytes; |
|
} else { |
|
curr_tensors_size = next_tensors_size; |
|
} |
|
gguf_add_tensor(ctx_out, t); |
|
} |
|
|
|
|
|
ctx_outs.push_back(ctx_out); |
|
|
|
|
|
for (auto & ctx : ctx_outs) { |
|
gguf_set_val_u16(ctx, LLM_KV_SPLIT_COUNT, ctx_outs.size()); |
|
} |
|
} |
|
|
|
~split_strategy() { |
|
for (auto & ctx_out : ctx_outs) { |
|
gguf_free(ctx_out); |
|
} |
|
} |
|
|
|
bool should_split(int i_tensor, size_t next_size) { |
|
if (params.mode == MODE_SIZE) { |
|
|
|
return next_size > params.n_bytes_split; |
|
} else if (params.mode == MODE_TENSOR) { |
|
|
|
return i_tensor > 0 && i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0; |
|
} |
|
|
|
GGML_ABORT("invalid mode"); |
|
} |
|
|
|
void print_info() { |
|
printf("n_split: %ld\n", ctx_outs.size()); |
|
int i_split = 0; |
|
for (auto & ctx_out : ctx_outs) { |
|
|
|
size_t total_size = gguf_get_meta_size(ctx_out); |
|
for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) { |
|
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_out, i)); |
|
total_size += ggml_nbytes(t); |
|
} |
|
total_size = total_size / 1000 / 1000; |
|
printf("split %05d: n_tensors = %d, total_size = %ldM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size); |
|
i_split++; |
|
} |
|
} |
|
|
|
void write() { |
|
int i_split = 0; |
|
int n_split = ctx_outs.size(); |
|
for (auto & ctx_out : ctx_outs) { |
|
|
|
char split_path[PATH_MAX] = {0}; |
|
llama_split_path(split_path, sizeof(split_path), params.output.c_str(), i_split, n_split); |
|
|
|
|
|
printf("Writing file %s ... ", split_path); |
|
fflush(stdout); |
|
std::ofstream fout = std::ofstream(split_path, std::ios::binary); |
|
fout.exceptions(std::ofstream::failbit); |
|
|
|
|
|
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out)); |
|
gguf_get_meta_data(ctx_out, data.data()); |
|
fout.write((const char *)data.data(), data.size()); |
|
|
|
|
|
for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) { |
|
|
|
const char * t_name = gguf_get_tensor_name(ctx_out, i); |
|
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name); |
|
auto n_bytes = ggml_nbytes(t); |
|
read_buf.resize(n_bytes); |
|
|
|
|
|
auto i_tensor_in = gguf_find_tensor(ctx_gguf, t_name); |
|
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in); |
|
|
|
|
|
copy_file_to_file(f_input, fout, offset, n_bytes); |
|
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes); |
|
} |
|
|
|
printf("done\n"); |
|
|
|
fout.close(); |
|
i_split++; |
|
} |
|
} |
|
|
|
void copy_file_to_file(std::ifstream & f_in, std::ofstream & f_out, const size_t in_offset, const size_t len) { |
|
|
|
if (read_buf.size() < len) { |
|
read_buf.resize(len); |
|
} |
|
f_in.seekg(in_offset); |
|
f_in.read((char *)read_buf.data(), len); |
|
f_out.write((const char *)read_buf.data(), len); |
|
} |
|
}; |
|
|
|
static void gguf_split(const split_params & split_params) { |
|
struct ggml_context * ctx_meta = NULL; |
|
|
|
struct gguf_init_params params = { |
|
true, |
|
&ctx_meta, |
|
}; |
|
|
|
std::ifstream f_input(split_params.input.c_str(), std::ios::binary); |
|
if (!f_input.is_open()) { |
|
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_params.input.c_str()); |
|
exit(EXIT_FAILURE); |
|
} |
|
|
|
auto * ctx_gguf = gguf_init_from_file(split_params.input.c_str(), params); |
|
if (!ctx_gguf) { |
|
fprintf(stderr, "%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str()); |
|
exit(EXIT_FAILURE); |
|
} |
|
|
|
|
|
split_strategy strategy(split_params, f_input, ctx_gguf, ctx_meta); |
|
int n_split = strategy.ctx_outs.size(); |
|
strategy.print_info(); |
|
|
|
if (!split_params.dry_run) { |
|
|
|
strategy.write(); |
|
} |
|
|
|
|
|
gguf_free(ctx_gguf); |
|
f_input.close(); |
|
|
|
fprintf(stderr, "%s: %d gguf split written with a total of %d tensors.\n", |
|
__func__, n_split, strategy.n_tensors); |
|
} |
|
|
|
static void gguf_merge(const split_params & split_params) { |
|
fprintf(stderr, "%s: %s -> %s\n", |
|
__func__, split_params.input.c_str(), |
|
split_params.output.c_str()); |
|
int n_split = 1; |
|
int total_tensors = 0; |
|
|
|
|
|
if (std::ifstream(split_params.output.c_str())) { |
|
fprintf(stderr, "%s: output file %s already exists\n", __func__, split_params.output.c_str()); |
|
exit(EXIT_FAILURE); |
|
} |
|
|
|
std::ofstream fout(split_params.output.c_str(), std::ios::binary); |
|
fout.exceptions(std::ofstream::failbit); |
|
|
|
auto * ctx_out = gguf_init_empty(); |
|
|
|
std::vector<uint8_t> read_data; |
|
std::vector<ggml_context *> ctx_metas; |
|
std::vector<gguf_context *> ctx_ggufs; |
|
|
|
char split_path[PATH_MAX] = {0}; |
|
strncpy(split_path, split_params.input.c_str(), sizeof(split_path) - 1); |
|
char split_prefix[PATH_MAX] = {0}; |
|
|
|
|
|
for (int i_split = 0; i_split < n_split; i_split++) { |
|
struct ggml_context * ctx_meta = NULL; |
|
|
|
struct gguf_init_params params = { |
|
true, |
|
&ctx_meta, |
|
}; |
|
|
|
if (i_split > 0) { |
|
llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split); |
|
} |
|
fprintf(stderr, "%s: reading metadata %s ...", __func__, split_path); |
|
|
|
auto * ctx_gguf = gguf_init_from_file(split_path, params); |
|
if (!ctx_gguf) { |
|
fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str()); |
|
exit(EXIT_FAILURE); |
|
} |
|
ctx_ggufs.push_back(ctx_gguf); |
|
ctx_metas.push_back(ctx_meta); |
|
|
|
if (i_split == 0) { |
|
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT); |
|
if (key_n_split < 0) { |
|
fprintf(stderr, |
|
"\n%s: input file does not contain %s metadata\n", |
|
__func__, |
|
LLM_KV_SPLIT_COUNT); |
|
gguf_free(ctx_gguf); |
|
ggml_free(ctx_meta); |
|
gguf_free(ctx_out); |
|
fout.close(); |
|
exit(EXIT_FAILURE); |
|
} |
|
|
|
n_split = gguf_get_val_u16(ctx_gguf, key_n_split); |
|
if (n_split < 1) { |
|
fprintf(stderr, |
|
"\n%s: input file does not contain a valid split count %d\n", |
|
__func__, |
|
n_split); |
|
gguf_free(ctx_gguf); |
|
ggml_free(ctx_meta); |
|
gguf_free(ctx_out); |
|
fout.close(); |
|
exit(EXIT_FAILURE); |
|
} |
|
|
|
|
|
if (!llama_split_prefix(split_prefix, sizeof (split_prefix), split_path, i_split, n_split)) { |
|
fprintf(stderr, "\n%s: unexpected input file name: %s" |
|
" i_split=%d" |
|
" n_split=%d\n", __func__, |
|
split_path, i_split, n_split); |
|
gguf_free(ctx_gguf); |
|
ggml_free(ctx_meta); |
|
gguf_free(ctx_out); |
|
fout.close(); |
|
exit(EXIT_FAILURE); |
|
} |
|
|
|
|
|
gguf_set_val_u16(ctx_gguf, LLM_KV_SPLIT_COUNT, 0); |
|
|
|
|
|
gguf_set_kv(ctx_out, ctx_gguf); |
|
} |
|
|
|
auto n_tensors = gguf_get_n_tensors(ctx_gguf); |
|
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) { |
|
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor); |
|
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name); |
|
gguf_add_tensor(ctx_out, t); |
|
} |
|
total_tensors += n_tensors; |
|
|
|
fprintf(stderr, "\033[3Ddone\n"); |
|
} |
|
|
|
|
|
{ |
|
auto meta_size = gguf_get_meta_size(ctx_out); |
|
::zeros(fout, meta_size); |
|
} |
|
|
|
|
|
for (int i_split = 0; i_split < n_split; i_split++) { |
|
llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split); |
|
std::ifstream f_input(split_path, std::ios::binary); |
|
if (!f_input.is_open()) { |
|
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_path); |
|
for (uint32_t i = 0; i < ctx_ggufs.size(); i++) { |
|
gguf_free(ctx_ggufs[i]); |
|
ggml_free(ctx_metas[i]); |
|
} |
|
gguf_free(ctx_out); |
|
fout.close(); |
|
exit(EXIT_FAILURE); |
|
} |
|
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path); |
|
|
|
auto * ctx_gguf = ctx_ggufs[i_split]; |
|
auto * ctx_meta = ctx_metas[i_split]; |
|
|
|
auto n_tensors = gguf_get_n_tensors(ctx_gguf); |
|
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) { |
|
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor); |
|
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name); |
|
|
|
auto n_bytes = ggml_nbytes(t); |
|
|
|
if (read_data.size() < n_bytes) { |
|
read_data.resize(n_bytes); |
|
} |
|
|
|
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor); |
|
f_input.seekg(offset); |
|
f_input.read((char *)read_data.data(), n_bytes); |
|
|
|
|
|
fout.write((const char *)read_data.data(), n_bytes); |
|
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes); |
|
} |
|
|
|
gguf_free(ctx_gguf); |
|
ggml_free(ctx_meta); |
|
f_input.close(); |
|
fprintf(stderr, "\033[3Ddone\n"); |
|
} |
|
|
|
{ |
|
|
|
fout.seekp(0); |
|
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out)); |
|
gguf_get_meta_data(ctx_out, data.data()); |
|
fout.write((const char *)data.data(), data.size()); |
|
|
|
fout.close(); |
|
gguf_free(ctx_out); |
|
} |
|
|
|
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n", |
|
__func__, split_params.output.c_str(), n_split, total_tensors); |
|
} |
|
|
|
int main(int argc, const char ** argv) { |
|
split_params params; |
|
split_params_parse(argc, argv, params); |
|
|
|
switch (params.operation) { |
|
case OP_SPLIT: gguf_split(params); |
|
break; |
|
case OP_MERGE: gguf_merge(params); |
|
break; |
|
default: split_print_usage(argv[0]); |
|
exit(EXIT_FAILURE); |
|
} |
|
|
|
return 0; |
|
} |
|
|