|
#include <algorithm> |
|
#include <array> |
|
#include <cassert> |
|
#include <chrono> |
|
#include <cinttypes> |
|
#include <clocale> |
|
#include <cmath> |
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <ctime> |
|
#include <iterator> |
|
#include <map> |
|
#include <numeric> |
|
#include <regex> |
|
#include <sstream> |
|
#include <string> |
|
#include <thread> |
|
#include <vector> |
|
|
|
#include "common.h" |
|
#include "ggml.h" |
|
#include "llama.h" |
|
|
|
#ifdef _WIN32 |
|
# define WIN32_LEAN_AND_MEAN |
|
# ifndef NOMINMAX |
|
# define NOMINMAX |
|
# endif |
|
# include <windows.h> |
|
#endif |
|
|
|
|
|
static uint64_t get_time_ns() { |
|
using clock = std::chrono::high_resolution_clock; |
|
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count(); |
|
} |
|
|
|
template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) { |
|
std::ostringstream str; |
|
for (size_t i = 0; i < values.size(); i++) { |
|
str << values[i]; |
|
if (i < values.size() - 1) { |
|
str << delim; |
|
} |
|
} |
|
return str.str(); |
|
} |
|
|
|
template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) { |
|
std::vector<std::string> str_values; |
|
std::transform(values.begin(), values.end(), std::back_inserter(str_values), f); |
|
return str_values; |
|
} |
|
|
|
template <typename T> static T avg(const std::vector<T> & v) { |
|
if (v.empty()) { |
|
return 0; |
|
} |
|
T sum = std::accumulate(v.begin(), v.end(), T(0)); |
|
return sum / (T) v.size(); |
|
} |
|
|
|
template <typename T> static T stdev(const std::vector<T> & v) { |
|
if (v.size() <= 1) { |
|
return 0; |
|
} |
|
T mean = avg(v); |
|
T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0)); |
|
T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1)); |
|
return stdev; |
|
} |
|
|
|
static std::string get_cpu_info() { |
|
std::vector<std::string> cpu_list; |
|
for (size_t i = 0; i < ggml_backend_dev_count(); i++) { |
|
auto * dev = ggml_backend_dev_get(i); |
|
auto dev_type = ggml_backend_dev_type(dev); |
|
if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) { |
|
cpu_list.push_back(ggml_backend_dev_description(dev)); |
|
} |
|
} |
|
return join(cpu_list, ", "); |
|
} |
|
|
|
static std::string get_gpu_info() { |
|
std::vector<std::string> gpu_list; |
|
for (size_t i = 0; i < ggml_backend_dev_count(); i++) { |
|
auto * dev = ggml_backend_dev_get(i); |
|
auto dev_type = ggml_backend_dev_type(dev); |
|
if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) { |
|
gpu_list.push_back(ggml_backend_dev_description(dev)); |
|
} |
|
} |
|
return join(gpu_list, ", "); |
|
} |
|
|
|
|
|
enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL }; |
|
|
|
static const char * output_format_str(output_formats format) { |
|
switch (format) { |
|
case NONE: |
|
return "none"; |
|
case CSV: |
|
return "csv"; |
|
case JSON: |
|
return "json"; |
|
case JSONL: |
|
return "jsonl"; |
|
case MARKDOWN: |
|
return "md"; |
|
case SQL: |
|
return "sql"; |
|
default: |
|
GGML_ABORT("invalid output format"); |
|
} |
|
} |
|
|
|
static bool output_format_from_str(const std::string & s, output_formats & format) { |
|
if (s == "none") { |
|
format = NONE; |
|
} else if (s == "csv") { |
|
format = CSV; |
|
} else if (s == "json") { |
|
format = JSON; |
|
} else if (s == "jsonl") { |
|
format = JSONL; |
|
} else if (s == "md") { |
|
format = MARKDOWN; |
|
} else if (s == "sql") { |
|
format = SQL; |
|
} else { |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
static const char * split_mode_str(llama_split_mode mode) { |
|
switch (mode) { |
|
case LLAMA_SPLIT_MODE_NONE: |
|
return "none"; |
|
case LLAMA_SPLIT_MODE_LAYER: |
|
return "layer"; |
|
case LLAMA_SPLIT_MODE_ROW: |
|
return "row"; |
|
default: |
|
GGML_ABORT("invalid split mode"); |
|
} |
|
} |
|
|
|
static std::string pair_str(const std::pair<int, int> & p) { |
|
static char buf[32]; |
|
snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second); |
|
return buf; |
|
} |
|
|
|
struct cmd_params { |
|
std::vector<std::string> model; |
|
std::vector<int> n_prompt; |
|
std::vector<int> n_gen; |
|
std::vector<std::pair<int, int>> n_pg; |
|
std::vector<int> n_batch; |
|
std::vector<int> n_ubatch; |
|
std::vector<ggml_type> type_k; |
|
std::vector<ggml_type> type_v; |
|
std::vector<int> n_threads; |
|
std::vector<std::string> cpu_mask; |
|
std::vector<bool> cpu_strict; |
|
std::vector<int> poll; |
|
std::vector<int> n_gpu_layers; |
|
std::vector<std::string> rpc_servers; |
|
std::vector<llama_split_mode> split_mode; |
|
std::vector<int> main_gpu; |
|
std::vector<bool> no_kv_offload; |
|
std::vector<bool> flash_attn; |
|
std::vector<std::vector<float>> tensor_split; |
|
std::vector<bool> use_mmap; |
|
std::vector<bool> embeddings; |
|
ggml_numa_strategy numa; |
|
int reps; |
|
ggml_sched_priority prio; |
|
int delay; |
|
bool verbose; |
|
bool progress; |
|
output_formats output_format; |
|
output_formats output_format_stderr; |
|
}; |
|
|
|
static const cmd_params cmd_params_defaults = { |
|
{ "models/7B/ggml-model-q4_0.gguf" }, |
|
{ 512 }, |
|
{ 128 }, |
|
{}, |
|
{ 2048 }, |
|
{ 512 }, |
|
{ GGML_TYPE_F16 }, |
|
{ GGML_TYPE_F16 }, |
|
{ cpu_get_num_math() }, |
|
{ "0x0" }, |
|
{ false }, |
|
{ 50 }, |
|
{ 99 }, |
|
{ "" }, |
|
{ LLAMA_SPLIT_MODE_LAYER }, |
|
{ 0 }, |
|
{ false }, |
|
{ false }, |
|
{ std::vector<float>(llama_max_devices(), 0.0f) }, |
|
{ true }, |
|
{ false }, |
|
GGML_NUMA_STRATEGY_DISABLED, |
|
5, |
|
GGML_SCHED_PRIO_NORMAL, |
|
0, |
|
false, |
|
false, |
|
MARKDOWN, |
|
NONE, |
|
}; |
|
|
|
static void print_usage(int , char ** argv) { |
|
printf("usage: %s [options]\n", argv[0]); |
|
printf("\n"); |
|
printf("options:\n"); |
|
printf(" -h, --help\n"); |
|
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str()); |
|
printf(" -p, --n-prompt <n> (default: %s)\n", |
|
join(cmd_params_defaults.n_prompt, ",").c_str()); |
|
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str()); |
|
printf(" -pg <pp,tg> (default: %s)\n", |
|
join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str()); |
|
printf(" -b, --batch-size <n> (default: %s)\n", |
|
join(cmd_params_defaults.n_batch, ",").c_str()); |
|
printf(" -ub, --ubatch-size <n> (default: %s)\n", |
|
join(cmd_params_defaults.n_ubatch, ",").c_str()); |
|
printf(" -ctk, --cache-type-k <t> (default: %s)\n", |
|
join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str()); |
|
printf(" -ctv, --cache-type-v <t> (default: %s)\n", |
|
join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str()); |
|
printf(" -t, --threads <n> (default: %s)\n", |
|
join(cmd_params_defaults.n_threads, ",").c_str()); |
|
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", |
|
join(cmd_params_defaults.cpu_mask, ",").c_str()); |
|
printf(" --cpu-strict <0|1> (default: %s)\n", |
|
join(cmd_params_defaults.cpu_strict, ",").c_str()); |
|
printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str()); |
|
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", |
|
join(cmd_params_defaults.n_gpu_layers, ",").c_str()); |
|
if (llama_supports_rpc()) { |
|
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", |
|
join(cmd_params_defaults.rpc_servers, ",").c_str()); |
|
} |
|
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", |
|
join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str()); |
|
printf(" -mg, --main-gpu <i> (default: %s)\n", |
|
join(cmd_params_defaults.main_gpu, ",").c_str()); |
|
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", |
|
join(cmd_params_defaults.no_kv_offload, ",").c_str()); |
|
printf(" -fa, --flash-attn <0|1> (default: %s)\n", |
|
join(cmd_params_defaults.flash_attn, ",").c_str()); |
|
printf(" -mmp, --mmap <0|1> (default: %s)\n", |
|
join(cmd_params_defaults.use_mmap, ",").c_str()); |
|
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n"); |
|
printf(" -embd, --embeddings <0|1> (default: %s)\n", |
|
join(cmd_params_defaults.embeddings, ",").c_str()); |
|
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n"); |
|
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps); |
|
printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio); |
|
printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay); |
|
printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n", |
|
output_format_str(cmd_params_defaults.output_format)); |
|
printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n", |
|
output_format_str(cmd_params_defaults.output_format_stderr)); |
|
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0"); |
|
printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0"); |
|
printf("\n"); |
|
printf( |
|
"Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter " |
|
"multiple times.\n"); |
|
} |
|
|
|
static ggml_type ggml_type_from_name(const std::string & s) { |
|
if (s == "f16") { |
|
return GGML_TYPE_F16; |
|
} |
|
if (s == "bf16") { |
|
return GGML_TYPE_BF16; |
|
} |
|
if (s == "q8_0") { |
|
return GGML_TYPE_Q8_0; |
|
} |
|
if (s == "q4_0") { |
|
return GGML_TYPE_Q4_0; |
|
} |
|
if (s == "q4_1") { |
|
return GGML_TYPE_Q4_1; |
|
} |
|
if (s == "q5_0") { |
|
return GGML_TYPE_Q5_0; |
|
} |
|
if (s == "q5_1") { |
|
return GGML_TYPE_Q5_1; |
|
} |
|
if (s == "iq4_nl") { |
|
return GGML_TYPE_IQ4_NL; |
|
} |
|
|
|
return GGML_TYPE_COUNT; |
|
} |
|
|
|
static cmd_params parse_cmd_params(int argc, char ** argv) { |
|
cmd_params params; |
|
std::string arg; |
|
bool invalid_param = false; |
|
const std::string arg_prefix = "--"; |
|
const char split_delim = ','; |
|
|
|
params.verbose = cmd_params_defaults.verbose; |
|
params.output_format = cmd_params_defaults.output_format; |
|
params.output_format_stderr = cmd_params_defaults.output_format_stderr; |
|
params.reps = cmd_params_defaults.reps; |
|
params.numa = cmd_params_defaults.numa; |
|
params.prio = cmd_params_defaults.prio; |
|
params.delay = cmd_params_defaults.delay; |
|
params.progress = cmd_params_defaults.progress; |
|
|
|
for (int i = 1; i < argc; i++) { |
|
arg = argv[i]; |
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { |
|
std::replace(arg.begin(), arg.end(), '_', '-'); |
|
} |
|
|
|
if (arg == "-h" || arg == "--help") { |
|
print_usage(argc, argv); |
|
exit(0); |
|
} else if (arg == "-m" || arg == "--model") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<std::string>(argv[i], split_delim); |
|
params.model.insert(params.model.end(), p.begin(), p.end()); |
|
} else if (arg == "-p" || arg == "--n-prompt") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<int>(argv[i], split_delim); |
|
params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end()); |
|
} else if (arg == "-n" || arg == "--n-gen") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<int>(argv[i], split_delim); |
|
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end()); |
|
} else if (arg == "-pg") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<std::string>(argv[i], ','); |
|
if (p.size() != 2) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) }); |
|
} else if (arg == "-b" || arg == "--batch-size") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<int>(argv[i], split_delim); |
|
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end()); |
|
} else if (arg == "-ub" || arg == "--ubatch-size") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<int>(argv[i], split_delim); |
|
params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end()); |
|
} else if (arg == "-ctk" || arg == "--cache-type-k") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<std::string>(argv[i], split_delim); |
|
std::vector<ggml_type> types; |
|
for (const auto & t : p) { |
|
ggml_type gt = ggml_type_from_name(t); |
|
if (gt == GGML_TYPE_COUNT) { |
|
invalid_param = true; |
|
break; |
|
} |
|
types.push_back(gt); |
|
} |
|
if (invalid_param) { |
|
break; |
|
} |
|
params.type_k.insert(params.type_k.end(), types.begin(), types.end()); |
|
} else if (arg == "-ctv" || arg == "--cache-type-v") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<std::string>(argv[i], split_delim); |
|
std::vector<ggml_type> types; |
|
for (const auto & t : p) { |
|
ggml_type gt = ggml_type_from_name(t); |
|
if (gt == GGML_TYPE_COUNT) { |
|
invalid_param = true; |
|
break; |
|
} |
|
types.push_back(gt); |
|
} |
|
if (invalid_param) { |
|
break; |
|
} |
|
params.type_v.insert(params.type_v.end(), types.begin(), types.end()); |
|
} else if (arg == "-t" || arg == "--threads") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<int>(argv[i], split_delim); |
|
params.n_threads.insert(params.n_threads.end(), p.begin(), p.end()); |
|
} else if (arg == "-C" || arg == "--cpu-mask") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<std::string>(argv[i], split_delim); |
|
params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end()); |
|
} else if (arg == "--cpu-strict") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<bool>(argv[i], split_delim); |
|
params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end()); |
|
} else if (arg == "--poll") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<int>(argv[i], split_delim); |
|
params.poll.insert(params.poll.end(), p.begin(), p.end()); |
|
} else if (arg == "-ngl" || arg == "--n-gpu-layers") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<int>(argv[i], split_delim); |
|
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end()); |
|
} else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.rpc_servers.push_back(argv[i]); |
|
} else if (arg == "-sm" || arg == "--split-mode") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<std::string>(argv[i], split_delim); |
|
std::vector<llama_split_mode> modes; |
|
for (const auto & m : p) { |
|
llama_split_mode mode; |
|
if (m == "none") { |
|
mode = LLAMA_SPLIT_MODE_NONE; |
|
} else if (m == "layer") { |
|
mode = LLAMA_SPLIT_MODE_LAYER; |
|
} else if (m == "row") { |
|
mode = LLAMA_SPLIT_MODE_ROW; |
|
} else { |
|
invalid_param = true; |
|
break; |
|
} |
|
modes.push_back(mode); |
|
} |
|
if (invalid_param) { |
|
break; |
|
} |
|
params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end()); |
|
} else if (arg == "-mg" || arg == "--main-gpu") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.main_gpu = string_split<int>(argv[i], split_delim); |
|
} else if (arg == "-nkvo" || arg == "--no-kv-offload") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<bool>(argv[i], split_delim); |
|
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end()); |
|
} else if (arg == "--numa") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} else { |
|
std::string value(argv[i]); |
|
if (value == "distribute" || value == "") { |
|
params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; |
|
} else if (value == "isolate") { |
|
params.numa = GGML_NUMA_STRATEGY_ISOLATE; |
|
} else if (value == "numactl") { |
|
params.numa = GGML_NUMA_STRATEGY_NUMACTL; |
|
} else { |
|
invalid_param = true; |
|
break; |
|
} |
|
} |
|
} else if (arg == "-fa" || arg == "--flash-attn") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<bool>(argv[i], split_delim); |
|
params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end()); |
|
} else if (arg == "-mmp" || arg == "--mmap") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<bool>(argv[i], split_delim); |
|
params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end()); |
|
} else if (arg == "-embd" || arg == "--embeddings") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
auto p = string_split<bool>(argv[i], split_delim); |
|
params.embeddings.insert(params.embeddings.end(), p.begin(), p.end()); |
|
} else if (arg == "-ts" || arg == "--tensor-split") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
for (auto ts : string_split<std::string>(argv[i], split_delim)) { |
|
|
|
const std::regex regex{ R"([;/]+)" }; |
|
std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 }; |
|
std::vector<std::string> split_arg{ it, {} }; |
|
GGML_ASSERT(split_arg.size() <= llama_max_devices()); |
|
|
|
std::vector<float> tensor_split(llama_max_devices()); |
|
for (size_t i = 0; i < llama_max_devices(); ++i) { |
|
if (i < split_arg.size()) { |
|
tensor_split[i] = std::stof(split_arg[i]); |
|
} else { |
|
tensor_split[i] = 0.0f; |
|
} |
|
} |
|
params.tensor_split.push_back(tensor_split); |
|
} |
|
} else if (arg == "-r" || arg == "--repetitions") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.reps = std::stoi(argv[i]); |
|
} else if (arg == "--prio") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.prio = (enum ggml_sched_priority) std::stoi(argv[i]); |
|
} else if (arg == "--delay") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.delay = std::stoi(argv[i]); |
|
} else if (arg == "-o" || arg == "--output") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
invalid_param = !output_format_from_str(argv[i], params.output_format); |
|
} else if (arg == "-oe" || arg == "--output-err") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
invalid_param = !output_format_from_str(argv[i], params.output_format_stderr); |
|
} else if (arg == "-v" || arg == "--verbose") { |
|
params.verbose = true; |
|
} else if (arg == "--progress") { |
|
params.progress = true; |
|
} else { |
|
invalid_param = true; |
|
break; |
|
} |
|
} |
|
if (invalid_param) { |
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); |
|
print_usage(argc, argv); |
|
exit(1); |
|
} |
|
|
|
|
|
if (params.model.empty()) { |
|
params.model = cmd_params_defaults.model; |
|
} |
|
if (params.n_prompt.empty()) { |
|
params.n_prompt = cmd_params_defaults.n_prompt; |
|
} |
|
if (params.n_gen.empty()) { |
|
params.n_gen = cmd_params_defaults.n_gen; |
|
} |
|
if (params.n_pg.empty()) { |
|
params.n_pg = cmd_params_defaults.n_pg; |
|
} |
|
if (params.n_batch.empty()) { |
|
params.n_batch = cmd_params_defaults.n_batch; |
|
} |
|
if (params.n_ubatch.empty()) { |
|
params.n_ubatch = cmd_params_defaults.n_ubatch; |
|
} |
|
if (params.type_k.empty()) { |
|
params.type_k = cmd_params_defaults.type_k; |
|
} |
|
if (params.type_v.empty()) { |
|
params.type_v = cmd_params_defaults.type_v; |
|
} |
|
if (params.n_gpu_layers.empty()) { |
|
params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; |
|
} |
|
if (params.rpc_servers.empty()) { |
|
params.rpc_servers = cmd_params_defaults.rpc_servers; |
|
} |
|
if (params.split_mode.empty()) { |
|
params.split_mode = cmd_params_defaults.split_mode; |
|
} |
|
if (params.main_gpu.empty()) { |
|
params.main_gpu = cmd_params_defaults.main_gpu; |
|
} |
|
if (params.no_kv_offload.empty()) { |
|
params.no_kv_offload = cmd_params_defaults.no_kv_offload; |
|
} |
|
if (params.flash_attn.empty()) { |
|
params.flash_attn = cmd_params_defaults.flash_attn; |
|
} |
|
if (params.tensor_split.empty()) { |
|
params.tensor_split = cmd_params_defaults.tensor_split; |
|
} |
|
if (params.use_mmap.empty()) { |
|
params.use_mmap = cmd_params_defaults.use_mmap; |
|
} |
|
if (params.embeddings.empty()) { |
|
params.embeddings = cmd_params_defaults.embeddings; |
|
} |
|
if (params.n_threads.empty()) { |
|
params.n_threads = cmd_params_defaults.n_threads; |
|
} |
|
if (params.cpu_mask.empty()) { |
|
params.cpu_mask = cmd_params_defaults.cpu_mask; |
|
} |
|
if (params.cpu_strict.empty()) { |
|
params.cpu_strict = cmd_params_defaults.cpu_strict; |
|
} |
|
if (params.poll.empty()) { |
|
params.poll = cmd_params_defaults.poll; |
|
} |
|
|
|
return params; |
|
} |
|
|
|
struct cmd_params_instance { |
|
std::string model; |
|
int n_prompt; |
|
int n_gen; |
|
int n_batch; |
|
int n_ubatch; |
|
ggml_type type_k; |
|
ggml_type type_v; |
|
int n_threads; |
|
std::string cpu_mask; |
|
bool cpu_strict; |
|
int poll; |
|
int n_gpu_layers; |
|
std::string rpc_servers; |
|
llama_split_mode split_mode; |
|
int main_gpu; |
|
bool no_kv_offload; |
|
bool flash_attn; |
|
std::vector<float> tensor_split; |
|
bool use_mmap; |
|
bool embeddings; |
|
|
|
llama_model_params to_llama_mparams() const { |
|
llama_model_params mparams = llama_model_default_params(); |
|
|
|
mparams.n_gpu_layers = n_gpu_layers; |
|
if (!rpc_servers.empty()) { |
|
mparams.rpc_servers = rpc_servers.c_str(); |
|
} |
|
mparams.split_mode = split_mode; |
|
mparams.main_gpu = main_gpu; |
|
mparams.tensor_split = tensor_split.data(); |
|
mparams.use_mmap = use_mmap; |
|
|
|
return mparams; |
|
} |
|
|
|
bool equal_mparams(const cmd_params_instance & other) const { |
|
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers == other.rpc_servers && |
|
split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap && |
|
tensor_split == other.tensor_split; |
|
} |
|
|
|
llama_context_params to_llama_cparams() const { |
|
llama_context_params cparams = llama_context_default_params(); |
|
|
|
cparams.n_ctx = n_prompt + n_gen; |
|
cparams.n_batch = n_batch; |
|
cparams.n_ubatch = n_ubatch; |
|
cparams.type_k = type_k; |
|
cparams.type_v = type_v; |
|
cparams.offload_kqv = !no_kv_offload; |
|
cparams.flash_attn = flash_attn; |
|
cparams.embeddings = embeddings; |
|
|
|
return cparams; |
|
} |
|
}; |
|
|
|
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) { |
|
std::vector<cmd_params_instance> instances; |
|
|
|
|
|
|
|
for (const auto & m : params.model) |
|
for (const auto & nl : params.n_gpu_layers) |
|
for (const auto & rpc : params.rpc_servers) |
|
for (const auto & sm : params.split_mode) |
|
for (const auto & mg : params.main_gpu) |
|
for (const auto & ts : params.tensor_split) |
|
for (const auto & mmp : params.use_mmap) |
|
for (const auto & embd : params.embeddings) |
|
for (const auto & nb : params.n_batch) |
|
for (const auto & nub : params.n_ubatch) |
|
for (const auto & tk : params.type_k) |
|
for (const auto & tv : params.type_v) |
|
for (const auto & nkvo : params.no_kv_offload) |
|
for (const auto & fa : params.flash_attn) |
|
for (const auto & nt : params.n_threads) |
|
for (const auto & cm : params.cpu_mask) |
|
for (const auto & cs : params.cpu_strict) |
|
for (const auto & pl : params.poll) { |
|
for (const auto & n_prompt : params.n_prompt) { |
|
if (n_prompt == 0) { |
|
continue; |
|
} |
|
cmd_params_instance instance = { |
|
m, |
|
n_prompt, |
|
0, |
|
nb, |
|
nub, |
|
tk, |
|
tv, |
|
nt, |
|
cm, |
|
cs, |
|
pl, |
|
nl, |
|
rpc, |
|
sm, |
|
mg, |
|
nkvo, |
|
fa, |
|
ts, |
|
mmp, |
|
embd, |
|
}; |
|
instances.push_back(instance); |
|
} |
|
|
|
for (const auto & n_gen : params.n_gen) { |
|
if (n_gen == 0) { |
|
continue; |
|
} |
|
cmd_params_instance instance = { |
|
m, |
|
0, |
|
n_gen, |
|
nb, |
|
nub, |
|
tk, |
|
tv, |
|
nt, |
|
cm, |
|
cs, |
|
pl, |
|
nl, |
|
rpc, |
|
sm, |
|
mg, |
|
nkvo, |
|
fa, |
|
ts, |
|
mmp, |
|
embd, |
|
}; |
|
instances.push_back(instance); |
|
} |
|
|
|
for (const auto & n_pg : params.n_pg) { |
|
if (n_pg.first == 0 && n_pg.second == 0) { |
|
continue; |
|
} |
|
cmd_params_instance instance = { |
|
m, |
|
n_pg.first, |
|
n_pg.second, |
|
nb, |
|
nub, |
|
tk, |
|
tv, |
|
nt, |
|
cm, |
|
cs, |
|
pl, |
|
nl, |
|
rpc, |
|
sm, |
|
mg, |
|
nkvo, |
|
fa, |
|
ts, |
|
mmp, |
|
embd, |
|
}; |
|
instances.push_back(instance); |
|
} |
|
} |
|
|
|
|
|
return instances; |
|
} |
|
|
|
struct test { |
|
static const std::string build_commit; |
|
static const int build_number; |
|
static const std::string cpu_info; |
|
static const std::string gpu_info; |
|
std::string model_filename; |
|
std::string model_type; |
|
uint64_t model_size; |
|
uint64_t model_n_params; |
|
int n_batch; |
|
int n_ubatch; |
|
int n_threads; |
|
std::string cpu_mask; |
|
bool cpu_strict; |
|
int poll; |
|
ggml_type type_k; |
|
ggml_type type_v; |
|
int n_gpu_layers; |
|
llama_split_mode split_mode; |
|
int main_gpu; |
|
bool no_kv_offload; |
|
bool flash_attn; |
|
std::vector<float> tensor_split; |
|
bool use_mmap; |
|
bool embeddings; |
|
int n_prompt; |
|
int n_gen; |
|
std::string test_time; |
|
std::vector<uint64_t> samples_ns; |
|
|
|
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) { |
|
model_filename = inst.model; |
|
char buf[128]; |
|
llama_model_desc(lmodel, buf, sizeof(buf)); |
|
model_type = buf; |
|
model_size = llama_model_size(lmodel); |
|
model_n_params = llama_model_n_params(lmodel); |
|
n_batch = inst.n_batch; |
|
n_ubatch = inst.n_ubatch; |
|
n_threads = inst.n_threads; |
|
cpu_mask = inst.cpu_mask; |
|
cpu_strict = inst.cpu_strict; |
|
poll = inst.poll; |
|
type_k = inst.type_k; |
|
type_v = inst.type_v; |
|
n_gpu_layers = inst.n_gpu_layers; |
|
split_mode = inst.split_mode; |
|
main_gpu = inst.main_gpu; |
|
no_kv_offload = inst.no_kv_offload; |
|
flash_attn = inst.flash_attn; |
|
tensor_split = inst.tensor_split; |
|
use_mmap = inst.use_mmap; |
|
embeddings = inst.embeddings; |
|
n_prompt = inst.n_prompt; |
|
n_gen = inst.n_gen; |
|
|
|
time_t t = time(NULL); |
|
std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t)); |
|
test_time = buf; |
|
|
|
(void) ctx; |
|
} |
|
|
|
uint64_t avg_ns() const { return ::avg(samples_ns); } |
|
|
|
uint64_t stdev_ns() const { return ::stdev(samples_ns); } |
|
|
|
std::vector<double> get_ts() const { |
|
int n_tokens = n_prompt + n_gen; |
|
std::vector<double> ts; |
|
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), |
|
[n_tokens](uint64_t t) { return 1e9 * n_tokens / t; }); |
|
return ts; |
|
} |
|
|
|
double avg_ts() const { return ::avg(get_ts()); } |
|
|
|
double stdev_ts() const { return ::stdev(get_ts()); } |
|
|
|
static std::string get_backend() { |
|
std::vector<std::string> backends; |
|
for (size_t i = 0; i < ggml_backend_reg_count(); i++) { |
|
auto * reg = ggml_backend_reg_get(i); |
|
std::string name = ggml_backend_reg_name(reg); |
|
if (name != "CPU") { |
|
backends.push_back(ggml_backend_reg_name(reg)); |
|
} |
|
} |
|
return backends.empty() ? "CPU" : join(backends, ","); |
|
} |
|
|
|
static const std::vector<std::string> & get_fields() { |
|
static const std::vector<std::string> fields = { |
|
"build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename", |
|
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads", |
|
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers", |
|
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "use_mmap", |
|
"embeddings", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns", |
|
"avg_ts", "stddev_ts", |
|
}; |
|
return fields; |
|
} |
|
|
|
enum field_type { STRING, BOOL, INT, FLOAT }; |
|
|
|
static field_type get_field_type(const std::string & field) { |
|
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" || |
|
field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" || |
|
field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "avg_ns" || |
|
field == "stddev_ns") { |
|
return INT; |
|
} |
|
if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" || |
|
field == "use_mmap" || field == "embeddings") { |
|
return BOOL; |
|
} |
|
if (field == "avg_ts" || field == "stddev_ts") { |
|
return FLOAT; |
|
} |
|
return STRING; |
|
} |
|
|
|
std::vector<std::string> get_values() const { |
|
std::string tensor_split_str; |
|
int max_nonzero = 0; |
|
for (size_t i = 0; i < llama_max_devices(); i++) { |
|
if (tensor_split[i] > 0) { |
|
max_nonzero = i; |
|
} |
|
} |
|
for (int i = 0; i <= max_nonzero; i++) { |
|
char buf[32]; |
|
snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]); |
|
tensor_split_str += buf; |
|
if (i < max_nonzero) { |
|
tensor_split_str += "/"; |
|
} |
|
} |
|
std::vector<std::string> values = { build_commit, |
|
std::to_string(build_number), |
|
cpu_info, |
|
gpu_info, |
|
get_backend(), |
|
model_filename, |
|
model_type, |
|
std::to_string(model_size), |
|
std::to_string(model_n_params), |
|
std::to_string(n_batch), |
|
std::to_string(n_ubatch), |
|
std::to_string(n_threads), |
|
cpu_mask, |
|
std::to_string(cpu_strict), |
|
std::to_string(poll), |
|
ggml_type_name(type_k), |
|
ggml_type_name(type_v), |
|
std::to_string(n_gpu_layers), |
|
split_mode_str(split_mode), |
|
std::to_string(main_gpu), |
|
std::to_string(no_kv_offload), |
|
std::to_string(flash_attn), |
|
tensor_split_str, |
|
std::to_string(use_mmap), |
|
std::to_string(embeddings), |
|
std::to_string(n_prompt), |
|
std::to_string(n_gen), |
|
test_time, |
|
std::to_string(avg_ns()), |
|
std::to_string(stdev_ns()), |
|
std::to_string(avg_ts()), |
|
std::to_string(stdev_ts()) }; |
|
return values; |
|
} |
|
|
|
std::map<std::string, std::string> get_map() const { |
|
std::map<std::string, std::string> map; |
|
auto fields = get_fields(); |
|
auto values = get_values(); |
|
std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()), |
|
std::make_pair<const std::string &, const std::string &>); |
|
return map; |
|
} |
|
}; |
|
|
|
const std::string test::build_commit = LLAMA_COMMIT; |
|
const int test::build_number = LLAMA_BUILD_NUMBER; |
|
const std::string test::cpu_info = get_cpu_info(); |
|
const std::string test::gpu_info = get_gpu_info(); |
|
|
|
struct printer { |
|
virtual ~printer() {} |
|
|
|
FILE * fout; |
|
|
|
virtual void print_header(const cmd_params & params) { (void) params; } |
|
|
|
virtual void print_test(const test & t) = 0; |
|
|
|
virtual void print_footer() {} |
|
}; |
|
|
|
struct csv_printer : public printer { |
|
static std::string escape_csv(const std::string & field) { |
|
std::string escaped = "\""; |
|
for (auto c : field) { |
|
if (c == '"') { |
|
escaped += "\""; |
|
} |
|
escaped += c; |
|
} |
|
escaped += "\""; |
|
return escaped; |
|
} |
|
|
|
void print_header(const cmd_params & params) override { |
|
std::vector<std::string> fields = test::get_fields(); |
|
fprintf(fout, "%s\n", join(fields, ",").c_str()); |
|
(void) params; |
|
} |
|
|
|
void print_test(const test & t) override { |
|
std::vector<std::string> values = t.get_values(); |
|
std::transform(values.begin(), values.end(), values.begin(), escape_csv); |
|
fprintf(fout, "%s\n", join(values, ",").c_str()); |
|
} |
|
}; |
|
|
|
static std::string escape_json(const std::string & value) { |
|
std::string escaped; |
|
for (auto c : value) { |
|
if (c == '"') { |
|
escaped += "\\\""; |
|
} else if (c == '\\') { |
|
escaped += "\\\\"; |
|
} else if (c <= 0x1f) { |
|
char buf[8]; |
|
snprintf(buf, sizeof(buf), "\\u%04x", c); |
|
escaped += buf; |
|
} else { |
|
escaped += c; |
|
} |
|
} |
|
return escaped; |
|
} |
|
|
|
static std::string format_json_value(const std::string & field, const std::string & value) { |
|
switch (test::get_field_type(field)) { |
|
case test::STRING: |
|
return "\"" + escape_json(value) + "\""; |
|
case test::BOOL: |
|
return value == "0" ? "false" : "true"; |
|
default: |
|
return value; |
|
} |
|
} |
|
|
|
struct json_printer : public printer { |
|
bool first = true; |
|
|
|
void print_header(const cmd_params & params) override { |
|
fprintf(fout, "[\n"); |
|
(void) params; |
|
} |
|
|
|
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) { |
|
assert(fields.size() == values.size()); |
|
for (size_t i = 0; i < fields.size(); i++) { |
|
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), |
|
format_json_value(fields.at(i), values.at(i)).c_str()); |
|
} |
|
} |
|
|
|
void print_test(const test & t) override { |
|
if (first) { |
|
first = false; |
|
} else { |
|
fprintf(fout, ",\n"); |
|
} |
|
fprintf(fout, " {\n"); |
|
print_fields(test::get_fields(), t.get_values()); |
|
fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str()); |
|
fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str()); |
|
fprintf(fout, " }"); |
|
fflush(fout); |
|
} |
|
|
|
void print_footer() override { fprintf(fout, "\n]\n"); } |
|
}; |
|
|
|
struct jsonl_printer : public printer { |
|
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) { |
|
assert(fields.size() == values.size()); |
|
for (size_t i = 0; i < fields.size(); i++) { |
|
fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str()); |
|
} |
|
} |
|
|
|
void print_test(const test & t) override { |
|
fprintf(fout, "{"); |
|
print_fields(test::get_fields(), t.get_values()); |
|
fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str()); |
|
fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str()); |
|
fprintf(fout, "}\n"); |
|
fflush(fout); |
|
} |
|
}; |
|
|
|
struct markdown_printer : public printer { |
|
std::vector<std::string> fields; |
|
|
|
static int get_field_width(const std::string & field) { |
|
if (field == "model") { |
|
return -30; |
|
} |
|
if (field == "t/s") { |
|
return 20; |
|
} |
|
if (field == "size" || field == "params") { |
|
return 10; |
|
} |
|
if (field == "n_gpu_layers") { |
|
return 3; |
|
} |
|
if (field == "n_threads") { |
|
return 7; |
|
} |
|
if (field == "n_batch") { |
|
return 7; |
|
} |
|
if (field == "n_ubatch") { |
|
return 8; |
|
} |
|
if (field == "type_k" || field == "type_v") { |
|
return 6; |
|
} |
|
if (field == "split_mode") { |
|
return 5; |
|
} |
|
if (field == "flash_attn") { |
|
return 2; |
|
} |
|
if (field == "use_mmap") { |
|
return 4; |
|
} |
|
if (field == "test") { |
|
return 13; |
|
} |
|
|
|
int width = std::max((int) field.length(), 10); |
|
|
|
if (test::get_field_type(field) == test::STRING) { |
|
return -width; |
|
} |
|
return width; |
|
} |
|
|
|
static std::string get_field_display_name(const std::string & field) { |
|
if (field == "n_gpu_layers") { |
|
return "ngl"; |
|
} |
|
if (field == "split_mode") { |
|
return "sm"; |
|
} |
|
if (field == "n_threads") { |
|
return "threads"; |
|
} |
|
if (field == "no_kv_offload") { |
|
return "nkvo"; |
|
} |
|
if (field == "flash_attn") { |
|
return "fa"; |
|
} |
|
if (field == "use_mmap") { |
|
return "mmap"; |
|
} |
|
if (field == "embeddings") { |
|
return "embd"; |
|
} |
|
if (field == "tensor_split") { |
|
return "ts"; |
|
} |
|
return field; |
|
} |
|
|
|
void print_header(const cmd_params & params) override { |
|
|
|
fields.emplace_back("model"); |
|
fields.emplace_back("size"); |
|
fields.emplace_back("params"); |
|
fields.emplace_back("backend"); |
|
bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos || |
|
test::get_backend().find("BLAS") != std::string::npos; |
|
if (!is_cpu_backend) { |
|
fields.emplace_back("n_gpu_layers"); |
|
} |
|
if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) { |
|
fields.emplace_back("n_threads"); |
|
} |
|
if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) { |
|
fields.emplace_back("cpu_mask"); |
|
} |
|
if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) { |
|
fields.emplace_back("cpu_strict"); |
|
} |
|
if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) { |
|
fields.emplace_back("poll"); |
|
} |
|
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) { |
|
fields.emplace_back("n_batch"); |
|
} |
|
if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) { |
|
fields.emplace_back("n_ubatch"); |
|
} |
|
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) { |
|
fields.emplace_back("type_k"); |
|
} |
|
if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) { |
|
fields.emplace_back("type_v"); |
|
} |
|
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) { |
|
fields.emplace_back("main_gpu"); |
|
} |
|
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) { |
|
fields.emplace_back("split_mode"); |
|
} |
|
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) { |
|
fields.emplace_back("no_kv_offload"); |
|
} |
|
if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) { |
|
fields.emplace_back("flash_attn"); |
|
} |
|
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) { |
|
fields.emplace_back("tensor_split"); |
|
} |
|
if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) { |
|
fields.emplace_back("use_mmap"); |
|
} |
|
if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) { |
|
fields.emplace_back("embeddings"); |
|
} |
|
fields.emplace_back("test"); |
|
fields.emplace_back("t/s"); |
|
|
|
fprintf(fout, "|"); |
|
for (const auto & field : fields) { |
|
fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str()); |
|
} |
|
fprintf(fout, "\n"); |
|
fprintf(fout, "|"); |
|
for (const auto & field : fields) { |
|
int width = get_field_width(field); |
|
fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-"); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
|
|
void print_test(const test & t) override { |
|
std::map<std::string, std::string> vmap = t.get_map(); |
|
|
|
fprintf(fout, "|"); |
|
for (const auto & field : fields) { |
|
std::string value; |
|
char buf[128]; |
|
if (field == "model") { |
|
value = t.model_type; |
|
} else if (field == "size") { |
|
if (t.model_size < 1024 * 1024 * 1024) { |
|
snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0); |
|
} else { |
|
snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0); |
|
} |
|
value = buf; |
|
} else if (field == "params") { |
|
if (t.model_n_params < 1000 * 1000 * 1000) { |
|
snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6); |
|
} else { |
|
snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9); |
|
} |
|
value = buf; |
|
} else if (field == "backend") { |
|
value = test::get_backend(); |
|
} else if (field == "test") { |
|
if (t.n_prompt > 0 && t.n_gen == 0) { |
|
snprintf(buf, sizeof(buf), "pp%d", t.n_prompt); |
|
} else if (t.n_gen > 0 && t.n_prompt == 0) { |
|
snprintf(buf, sizeof(buf), "tg%d", t.n_gen); |
|
} else { |
|
snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen); |
|
} |
|
value = buf; |
|
} else if (field == "t/s") { |
|
snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts()); |
|
value = buf; |
|
} else if (vmap.find(field) != vmap.end()) { |
|
value = vmap.at(field); |
|
} else { |
|
assert(false); |
|
exit(1); |
|
} |
|
|
|
int width = get_field_width(field); |
|
if (field == "t/s") { |
|
|
|
width += 1; |
|
} |
|
fprintf(fout, " %*s |", width, value.c_str()); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
|
|
void print_footer() override { |
|
fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number); |
|
} |
|
}; |
|
|
|
struct sql_printer : public printer { |
|
static std::string get_sql_field_type(const std::string & field) { |
|
switch (test::get_field_type(field)) { |
|
case test::STRING: |
|
return "TEXT"; |
|
case test::BOOL: |
|
case test::INT: |
|
return "INTEGER"; |
|
case test::FLOAT: |
|
return "REAL"; |
|
default: |
|
assert(false); |
|
exit(1); |
|
} |
|
} |
|
|
|
void print_header(const cmd_params & params) override { |
|
std::vector<std::string> fields = test::get_fields(); |
|
fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n"); |
|
for (size_t i = 0; i < fields.size(); i++) { |
|
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), |
|
i < fields.size() - 1 ? "," : ""); |
|
} |
|
fprintf(fout, ");\n"); |
|
fprintf(fout, "\n"); |
|
(void) params; |
|
} |
|
|
|
void print_test(const test & t) override { |
|
fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str()); |
|
fprintf(fout, "VALUES ("); |
|
std::vector<std::string> values = t.get_values(); |
|
for (size_t i = 0; i < values.size(); i++) { |
|
fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : ""); |
|
} |
|
fprintf(fout, ");\n"); |
|
} |
|
}; |
|
|
|
static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) { |
|
llama_set_n_threads(ctx, n_threads, n_threads); |
|
|
|
const llama_model * model = llama_get_model(ctx); |
|
const int32_t n_vocab = llama_n_vocab(model); |
|
|
|
std::vector<llama_token> tokens(n_batch); |
|
|
|
int n_processed = 0; |
|
|
|
while (n_processed < n_prompt) { |
|
int n_tokens = std::min(n_prompt - n_processed, n_batch); |
|
tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab; |
|
for (int i = 1; i < n_tokens; i++) { |
|
tokens[i] = std::rand() % n_vocab; |
|
} |
|
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens)); |
|
n_processed += n_tokens; |
|
} |
|
|
|
llama_synchronize(ctx); |
|
} |
|
|
|
static void test_gen(llama_context * ctx, int n_gen, int n_threads) { |
|
llama_set_n_threads(ctx, n_threads, n_threads); |
|
|
|
const llama_model * model = llama_get_model(ctx); |
|
const int32_t n_vocab = llama_n_vocab(model); |
|
|
|
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab; |
|
|
|
for (int i = 0; i < n_gen; i++) { |
|
llama_decode(ctx, llama_batch_get_one(&token, 1)); |
|
llama_synchronize(ctx); |
|
token = std::rand() % n_vocab; |
|
} |
|
} |
|
|
|
static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) { |
|
(void) level; |
|
(void) text; |
|
(void) user_data; |
|
} |
|
|
|
static std::unique_ptr<printer> create_printer(output_formats format) { |
|
switch (format) { |
|
case NONE: |
|
return nullptr; |
|
case CSV: |
|
return std::unique_ptr<printer>(new csv_printer()); |
|
case JSON: |
|
return std::unique_ptr<printer>(new json_printer()); |
|
case JSONL: |
|
return std::unique_ptr<printer>(new jsonl_printer()); |
|
case MARKDOWN: |
|
return std::unique_ptr<printer>(new markdown_printer()); |
|
case SQL: |
|
return std::unique_ptr<printer>(new sql_printer()); |
|
} |
|
GGML_ABORT("fatal error"); |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
|
|
setlocale(LC_CTYPE, ".UTF-8"); |
|
|
|
#if !defined(NDEBUG) |
|
fprintf(stderr, "warning: asserts enabled, performance may be affected\n"); |
|
#endif |
|
|
|
#if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__)) |
|
fprintf(stderr, "warning: debug build, performance may be affected\n"); |
|
#endif |
|
|
|
#if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__) |
|
fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n"); |
|
#endif |
|
|
|
cmd_params params = parse_cmd_params(argc, argv); |
|
|
|
|
|
ggml_backend_load_all(); |
|
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); |
|
if (!cpu_dev) { |
|
fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__); |
|
return 1; |
|
} |
|
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev); |
|
auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new"); |
|
auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free"); |
|
|
|
|
|
if (!params.verbose) { |
|
llama_log_set(llama_null_log_callback, NULL); |
|
} |
|
llama_backend_init(); |
|
llama_numa_init(params.numa); |
|
|
|
set_process_priority(params.prio); |
|
|
|
|
|
std::unique_ptr<printer> p = create_printer(params.output_format); |
|
std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr); |
|
|
|
if (p) { |
|
p->fout = stdout; |
|
p->print_header(params); |
|
} |
|
|
|
if (p_err) { |
|
p_err->fout = stderr; |
|
p_err->print_header(params); |
|
} |
|
|
|
std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params); |
|
|
|
llama_model * lmodel = nullptr; |
|
const cmd_params_instance * prev_inst = nullptr; |
|
|
|
int params_idx = 0; |
|
auto params_count = params_instances.size(); |
|
for (const auto & inst : params_instances) { |
|
params_idx++; |
|
if (params.progress) { |
|
fprintf(stderr, "llama-bench: benchmark %d/%ld: starting\n", params_idx, params_count); |
|
} |
|
|
|
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) { |
|
if (lmodel) { |
|
llama_free_model(lmodel); |
|
} |
|
|
|
lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams()); |
|
if (lmodel == NULL) { |
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str()); |
|
return 1; |
|
} |
|
prev_inst = &inst; |
|
} |
|
|
|
llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams()); |
|
if (ctx == NULL) { |
|
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str()); |
|
llama_free_model(lmodel); |
|
return 1; |
|
} |
|
|
|
test t(inst, lmodel, ctx); |
|
|
|
llama_kv_cache_clear(ctx); |
|
|
|
|
|
if (params.delay) { |
|
std::this_thread::sleep_for(std::chrono::seconds(params.delay)); |
|
} |
|
|
|
struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads); |
|
if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) { |
|
fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str()); |
|
exit(1); |
|
} |
|
tpp.strict_cpu = t.cpu_strict; |
|
tpp.poll = t.poll; |
|
tpp.prio = params.prio; |
|
|
|
struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp); |
|
if (!threadpool) { |
|
fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads); |
|
exit(1); |
|
} |
|
|
|
llama_attach_threadpool(ctx, threadpool, NULL); |
|
|
|
|
|
if (t.n_prompt > 0) { |
|
if (params.progress) { |
|
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup prompt run\n", params_idx, params_count); |
|
} |
|
|
|
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads); |
|
} |
|
if (t.n_gen > 0) { |
|
if (params.progress) { |
|
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup generation run\n", params_idx, params_count); |
|
} |
|
test_gen(ctx, 1, t.n_threads); |
|
} |
|
|
|
for (int i = 0; i < params.reps; i++) { |
|
llama_kv_cache_clear(ctx); |
|
|
|
uint64_t t_start = get_time_ns(); |
|
|
|
if (t.n_prompt > 0) { |
|
if (params.progress) { |
|
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, |
|
i + 1, params.reps); |
|
} |
|
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads); |
|
} |
|
if (t.n_gen > 0) { |
|
if (params.progress) { |
|
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, |
|
i + 1, params.reps); |
|
} |
|
test_gen(ctx, t.n_gen, t.n_threads); |
|
} |
|
|
|
uint64_t t_ns = get_time_ns() - t_start; |
|
t.samples_ns.push_back(t_ns); |
|
} |
|
|
|
if (p) { |
|
p->print_test(t); |
|
fflush(p->fout); |
|
} |
|
|
|
if (p_err) { |
|
p_err->print_test(t); |
|
fflush(p_err->fout); |
|
} |
|
|
|
llama_perf_context_print(ctx); |
|
|
|
llama_free(ctx); |
|
|
|
ggml_threadpool_free_fn(threadpool); |
|
} |
|
|
|
llama_free_model(lmodel); |
|
|
|
if (p) { |
|
p->print_footer(); |
|
} |
|
|
|
if (p_err) { |
|
p_err->print_footer(); |
|
} |
|
|
|
llama_backend_free(); |
|
|
|
return 0; |
|
} |
|
|