|
import Foundation |
|
import llama |
|
|
|
enum LlamaError: Error { |
|
case couldNotInitializeContext |
|
} |
|
|
|
func llama_batch_clear(_ batch: inout llama_batch) { |
|
batch.n_tokens = 0 |
|
} |
|
|
|
func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama_pos, _ seq_ids: [llama_seq_id], _ logits: Bool) { |
|
batch.token [Int(batch.n_tokens)] = id |
|
batch.pos [Int(batch.n_tokens)] = pos |
|
batch.n_seq_id[Int(batch.n_tokens)] = Int32(seq_ids.count) |
|
for i in 0..<seq_ids.count { |
|
batch.seq_id[Int(batch.n_tokens)]![Int(i)] = seq_ids[i] |
|
} |
|
batch.logits [Int(batch.n_tokens)] = logits ? 1 : 0 |
|
|
|
batch.n_tokens += 1 |
|
} |
|
|
|
actor LlamaContext { |
|
private var model: OpaquePointer |
|
private var context: OpaquePointer |
|
private var sampling: UnsafeMutablePointer<llama_sampler> |
|
private var batch: llama_batch |
|
private var tokens_list: [llama_token] |
|
var is_done: Bool = false |
|
|
|
|
|
private var temporary_invalid_cchars: [CChar] |
|
|
|
var n_len: Int32 = 1024 |
|
var n_cur: Int32 = 0 |
|
|
|
var n_decode: Int32 = 0 |
|
|
|
init(model: OpaquePointer, context: OpaquePointer) { |
|
self.model = model |
|
self.context = context |
|
self.tokens_list = [] |
|
self.batch = llama_batch_init(512, 0, 1) |
|
self.temporary_invalid_cchars = [] |
|
let sparams = llama_sampler_chain_default_params() |
|
self.sampling = llama_sampler_chain_init(sparams) |
|
llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4)) |
|
llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234)) |
|
} |
|
|
|
deinit { |
|
llama_sampler_free(sampling) |
|
llama_batch_free(batch) |
|
llama_free(context) |
|
llama_free_model(model) |
|
llama_backend_free() |
|
} |
|
|
|
static func create_context(path: String) throws -> LlamaContext { |
|
llama_backend_init() |
|
var model_params = llama_model_default_params() |
|
|
|
#if targetEnvironment(simulator) |
|
model_params.n_gpu_layers = 0 |
|
print("Running on simulator, force use n_gpu_layers = 0") |
|
#endif |
|
let model = llama_load_model_from_file(path, model_params) |
|
guard let model else { |
|
print("Could not load model at \(path)") |
|
throw LlamaError.couldNotInitializeContext |
|
} |
|
|
|
let n_threads = max(1, min(8, ProcessInfo.processInfo.processorCount - 2)) |
|
print("Using \(n_threads) threads") |
|
|
|
var ctx_params = llama_context_default_params() |
|
ctx_params.n_ctx = 2048 |
|
ctx_params.n_threads = Int32(n_threads) |
|
ctx_params.n_threads_batch = Int32(n_threads) |
|
|
|
let context = llama_new_context_with_model(model, ctx_params) |
|
guard let context else { |
|
print("Could not load context!") |
|
throw LlamaError.couldNotInitializeContext |
|
} |
|
|
|
return LlamaContext(model: model, context: context) |
|
} |
|
|
|
func model_info() -> String { |
|
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 256) |
|
result.initialize(repeating: Int8(0), count: 256) |
|
defer { |
|
result.deallocate() |
|
} |
|
|
|
|
|
|
|
let nChars = llama_model_desc(model, result, 256) |
|
let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nChars)) |
|
|
|
var SwiftString = "" |
|
for char in bufferPointer { |
|
SwiftString.append(Character(UnicodeScalar(UInt8(char)))) |
|
} |
|
|
|
return SwiftString |
|
} |
|
|
|
func get_n_tokens() -> Int32 { |
|
return batch.n_tokens; |
|
} |
|
|
|
func completion_init(text: String) { |
|
print("attempting to complete \"\(text)\"") |
|
|
|
tokens_list = tokenize(text: text, add_bos: true) |
|
temporary_invalid_cchars = [] |
|
|
|
let n_ctx = llama_n_ctx(context) |
|
let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count) |
|
|
|
print("\n n_len = \(n_len), n_ctx = \(n_ctx), n_kv_req = \(n_kv_req)") |
|
|
|
if n_kv_req > n_ctx { |
|
print("error: n_kv_req > n_ctx, the required KV cache size is not big enough") |
|
} |
|
|
|
for id in tokens_list { |
|
print(String(cString: token_to_piece(token: id) + [0])) |
|
} |
|
|
|
llama_batch_clear(&batch) |
|
|
|
for i1 in 0..<tokens_list.count { |
|
let i = Int(i1) |
|
llama_batch_add(&batch, tokens_list[i], Int32(i), [0], false) |
|
} |
|
batch.logits[Int(batch.n_tokens) - 1] = 1 |
|
|
|
if llama_decode(context, batch) != 0 { |
|
print("llama_decode() failed") |
|
} |
|
|
|
n_cur = batch.n_tokens |
|
} |
|
|
|
func completion_loop() -> String { |
|
var new_token_id: llama_token = 0 |
|
|
|
new_token_id = llama_sampler_sample(sampling, context, batch.n_tokens - 1) |
|
|
|
if llama_token_is_eog(model, new_token_id) || n_cur == n_len { |
|
print("\n") |
|
is_done = true |
|
let new_token_str = String(cString: temporary_invalid_cchars + [0]) |
|
temporary_invalid_cchars.removeAll() |
|
return new_token_str |
|
} |
|
|
|
let new_token_cchars = token_to_piece(token: new_token_id) |
|
temporary_invalid_cchars.append(contentsOf: new_token_cchars) |
|
let new_token_str: String |
|
if let string = String(validatingUTF8: temporary_invalid_cchars + [0]) { |
|
temporary_invalid_cchars.removeAll() |
|
new_token_str = string |
|
} else if (0 ..< temporary_invalid_cchars.count).contains(where: {$0 != 0 && String(validatingUTF8: Array(temporary_invalid_cchars.suffix($0)) + [0]) != nil}) { |
|
|
|
let string = String(cString: temporary_invalid_cchars + [0]) |
|
temporary_invalid_cchars.removeAll() |
|
new_token_str = string |
|
} else { |
|
new_token_str = "" |
|
} |
|
print(new_token_str) |
|
|
|
|
|
llama_batch_clear(&batch) |
|
llama_batch_add(&batch, new_token_id, n_cur, [0], true) |
|
|
|
n_decode += 1 |
|
n_cur += 1 |
|
|
|
if llama_decode(context, batch) != 0 { |
|
print("failed to evaluate llama!") |
|
} |
|
|
|
return new_token_str |
|
} |
|
|
|
func bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) -> String { |
|
var pp_avg: Double = 0 |
|
var tg_avg: Double = 0 |
|
|
|
var pp_std: Double = 0 |
|
var tg_std: Double = 0 |
|
|
|
for _ in 0..<nr { |
|
|
|
|
|
llama_batch_clear(&batch) |
|
|
|
let n_tokens = pp |
|
|
|
for i in 0..<n_tokens { |
|
llama_batch_add(&batch, 0, Int32(i), [0], false) |
|
} |
|
batch.logits[Int(batch.n_tokens) - 1] = 1 |
|
|
|
llama_kv_cache_clear(context) |
|
|
|
let t_pp_start = ggml_time_us() |
|
|
|
if llama_decode(context, batch) != 0 { |
|
print("llama_decode() failed during prompt") |
|
} |
|
llama_synchronize(context) |
|
|
|
let t_pp_end = ggml_time_us() |
|
|
|
|
|
|
|
llama_kv_cache_clear(context) |
|
|
|
let t_tg_start = ggml_time_us() |
|
|
|
for i in 0..<tg { |
|
llama_batch_clear(&batch) |
|
|
|
for j in 0..<pl { |
|
llama_batch_add(&batch, 0, Int32(i), [Int32(j)], true) |
|
} |
|
|
|
if llama_decode(context, batch) != 0 { |
|
print("llama_decode() failed during text generation") |
|
} |
|
llama_synchronize(context) |
|
} |
|
|
|
let t_tg_end = ggml_time_us() |
|
|
|
llama_kv_cache_clear(context) |
|
|
|
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0 |
|
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0 |
|
|
|
let speed_pp = Double(pp) / t_pp |
|
let speed_tg = Double(pl*tg) / t_tg |
|
|
|
pp_avg += speed_pp |
|
tg_avg += speed_tg |
|
|
|
pp_std += speed_pp * speed_pp |
|
tg_std += speed_tg * speed_tg |
|
|
|
print("pp \(speed_pp) t/s, tg \(speed_tg) t/s") |
|
} |
|
|
|
pp_avg /= Double(nr) |
|
tg_avg /= Double(nr) |
|
|
|
if nr > 1 { |
|
pp_std = sqrt(pp_std / Double(nr - 1) - pp_avg * pp_avg * Double(nr) / Double(nr - 1)) |
|
tg_std = sqrt(tg_std / Double(nr - 1) - tg_avg * tg_avg * Double(nr) / Double(nr - 1)) |
|
} else { |
|
pp_std = 0 |
|
tg_std = 0 |
|
} |
|
|
|
let model_desc = model_info(); |
|
let model_size = String(format: "%.2f GiB", Double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0); |
|
let model_n_params = String(format: "%.2f B", Double(llama_model_n_params(model)) / 1e9); |
|
let backend = "Metal"; |
|
let pp_avg_str = String(format: "%.2f", pp_avg); |
|
let tg_avg_str = String(format: "%.2f", tg_avg); |
|
let pp_std_str = String(format: "%.2f", pp_std); |
|
let tg_std_str = String(format: "%.2f", tg_std); |
|
|
|
var result = "" |
|
|
|
result += String("| model | size | params | backend | test | t/s |\n") |
|
result += String("| --- | --- | --- | --- | --- | --- |\n") |
|
result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | pp \(pp) | \(pp_avg_str) ± \(pp_std_str) |\n") |
|
result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | tg \(tg) | \(tg_avg_str) ± \(tg_std_str) |\n") |
|
|
|
return result; |
|
} |
|
|
|
func clear() { |
|
tokens_list.removeAll() |
|
temporary_invalid_cchars.removeAll() |
|
llama_kv_cache_clear(context) |
|
} |
|
|
|
private func tokenize(text: String, add_bos: Bool) -> [llama_token] { |
|
let utf8Count = text.utf8.count |
|
let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1 |
|
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens) |
|
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false) |
|
|
|
var swiftTokens: [llama_token] = [] |
|
for i in 0..<tokenCount { |
|
swiftTokens.append(tokens[Int(i)]) |
|
} |
|
|
|
tokens.deallocate() |
|
|
|
return swiftTokens |
|
} |
|
|
|
|
|
private func token_to_piece(token: llama_token) -> [CChar] { |
|
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8) |
|
result.initialize(repeating: Int8(0), count: 8) |
|
defer { |
|
result.deallocate() |
|
} |
|
let nTokens = llama_token_to_piece(model, token, result, 8, 0, false) |
|
|
|
if nTokens < 0 { |
|
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens)) |
|
newResult.initialize(repeating: Int8(0), count: Int(-nTokens)) |
|
defer { |
|
newResult.deallocate() |
|
} |
|
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, 0, false) |
|
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens)) |
|
return Array(bufferPointer) |
|
} else { |
|
let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nTokens)) |
|
return Array(bufferPointer) |
|
} |
|
} |
|
} |
|
|