|
#include "arg.h" |
|
#include "common.h" |
|
#include "log.h" |
|
#include "ngram-cache.h" |
|
#include "llama.h" |
|
#include "ggml.h" |
|
|
|
#include <cstdint> |
|
#include <cstdio> |
|
#include <cinttypes> |
|
#include <fstream> |
|
#include <string> |
|
#include <vector> |
|
|
|
int main(int argc, char ** argv){ |
|
common_params params; |
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) { |
|
return 1; |
|
} |
|
|
|
common_init(); |
|
|
|
const int n_draft = params.speculative.n_max; |
|
|
|
|
|
llama_backend_init(); |
|
llama_numa_init(params.numa); |
|
|
|
|
|
common_init_result llama_init = common_init_from_params(params); |
|
|
|
llama_model * model = llama_init.model; |
|
llama_context * ctx = llama_init.context; |
|
|
|
|
|
std::vector<llama_token> inp; |
|
inp = common_tokenize(ctx, params.prompt, true, true); |
|
|
|
common_ngram_cache ngram_cache_context; |
|
common_ngram_cache ngram_cache_dynamic; |
|
common_ngram_cache ngram_cache_static; |
|
|
|
int64_t t_draft_flat_us = 0; |
|
int64_t t_draft_us = 0; |
|
|
|
{ |
|
const int64_t t_start_draft_us = ggml_time_us(); |
|
|
|
if (!params.lookup_cache_static.empty()) { |
|
try { |
|
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static); |
|
} catch (std::ifstream::failure const &) { |
|
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str()); |
|
exit(1); |
|
} |
|
} |
|
|
|
if (!params.lookup_cache_dynamic.empty()) { |
|
try { |
|
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic); |
|
} catch (std::ifstream::failure const &) {} |
|
} |
|
|
|
t_draft_flat_us += ggml_time_us() - t_start_draft_us; |
|
} |
|
|
|
const int n_input = inp.size(); |
|
const int n_ctx = llama_n_ctx(ctx); |
|
|
|
int n_drafted = 0; |
|
int n_accept = 0; |
|
|
|
const int64_t t_start_ms = ggml_time_ms(); |
|
|
|
|
|
|
|
for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) { |
|
const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx); |
|
std::vector<llama_token> pseudo_output; |
|
pseudo_output.push_back(inp_slice[0]); |
|
|
|
while ((int) pseudo_output.size() < n_ctx) { |
|
|
|
std::vector<llama_token> draft; |
|
draft.push_back(pseudo_output.back()); |
|
|
|
{ |
|
const int64_t t_start_draft_us = ggml_time_us(); |
|
common_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static); |
|
t_draft_us += ggml_time_us() - t_start_draft_us; |
|
} |
|
|
|
n_drafted += draft.size() - 1; |
|
|
|
for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) { |
|
const llama_token ground_truth = inp_slice[pseudo_output.size()]; |
|
const llama_token drafted = draft[j]; |
|
|
|
if (ground_truth != drafted) { |
|
break; |
|
} |
|
|
|
++n_accept; |
|
pseudo_output.push_back(ground_truth); |
|
|
|
{ |
|
const int64_t t_start_draft_us = ggml_time_us(); |
|
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false); |
|
t_draft_us += ggml_time_us() - t_start_draft_us; |
|
} |
|
} |
|
|
|
|
|
if ((int) pseudo_output.size() < n_ctx) { |
|
pseudo_output.push_back(inp_slice[pseudo_output.size()]); |
|
{ |
|
const int64_t t_start_draft_us = ggml_time_us(); |
|
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false); |
|
t_draft_us += ggml_time_us() - t_start_draft_us; |
|
} |
|
} |
|
|
|
draft.erase(draft.begin()); |
|
|
|
} |
|
if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) { |
|
const int64_t t_now_ms = ggml_time_ms(); |
|
const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start; |
|
const int64_t eta_min = eta_ms / (60*1000); |
|
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000; |
|
|
|
LOG_INF("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s); |
|
} |
|
|
|
|
|
common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context); |
|
ngram_cache_context.clear(); |
|
} |
|
|
|
LOG("\n"); |
|
|
|
LOG_INF("\n"); |
|
LOG_INF("n_draft = %d\n", n_draft); |
|
LOG_INF("n_predict = %d\n", n_input - n_input % n_ctx); |
|
LOG_INF("n_drafted = %d\n", n_drafted); |
|
LOG_INF("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3); |
|
LOG_INF("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", |
|
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); |
|
LOG_INF("n_accept = %d\n", n_accept); |
|
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); |
|
|
|
llama_free(ctx); |
|
llama_free_model(model); |
|
|
|
llama_backend_free(); |
|
|
|
LOG("\n\n"); |
|
|
|
return 0; |
|
} |
|
|